Notation. θ_0 , Θ , y_i , x_i , $s(y_i, x_i; \theta)$ and other notation pertain to the objects defined in the 240B lecture notes.

Assumption ULLN 1 $\sup_{\theta \in \Theta} |\sum_{i=1}^n f(y_i, x_i; \theta)/n - E[f(y_i, x_i; \theta)]| \xrightarrow{p} 0$, if the following conditions hold,

- (i) $(i.i.d.) \{y_i, x_i\}_{i=1}^n$ is an i.i.d. sequence of random variables;
- (ii) (Compactness) Θ is compact;
- (iii) (Continuity) $f(y_i, x_i; \theta)$ is continuous in θ for all $(y_i, x'_i)'$;
- (iv) (Measurability) $f(y_i, x_i; \theta)$ is measurable in $(y_i, x'_i)'$ for all $\theta \in \Theta$;
- (v) (Dominance) There exists a dominating function $d(y_i, x_i)$ such that $|f(y_i, x_i; \theta)| \leq d(y_i, x_i)$ for all $\theta \in \Theta$ and $E[d(y_i, x_i)] < \infty$.

Assumption ULLN 2 $\sup_{\theta \in \Theta} |\sum_{i=1}^n f(y_i, x_i; \theta)/n - E[f(y_i, x_i; \theta)]| \xrightarrow{p} 0$, if the following conditions hold,

- (i) (Law of Large Numbers) $\{y_i, x_i\}$ is i.i.d., and $E[f(y_i, x_i; \theta)] < \infty$ for all $\theta \in \Theta$, which implies $\sum_{i=1}^n f(y_i, x_i; \theta)/n \xrightarrow{p} E[f(y_i, x_i; \theta)].$
- (ii) (Compactness of Θ) Θ is in a compact subset of \mathbb{R}^k .
- (iii) (Measurability in $(y_i, x'_i)'$) $f(y_i, x_i; \theta)$ is measurable in $(y_i, x'_i)'$ for all $\theta \in \Theta$.
- (iv) (Lipschitz Continuity) For all $\theta, \theta' \in \Theta$, there exists $g(y_i, x_i)$, such that $|f(y_i, x_i; \theta) f(y_i, x_i; \theta')| \leq g(y_i, x_i) \|\theta \theta'\|$, for some norm $\|.\|$, and $E[g(y_i, x_i)] < \infty$.

Formula for the score statistic

$$\equiv \left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}s_{i}(\hat{\theta}_{R})\right)'A_{nR}^{-1}C_{nR}'\left\{\widehat{Avar}\left(C_{nR}A_{nR}^{-1}\sum_{i=1}^{n}s_{i}(\hat{\theta}_{R})/\sqrt{n}\right)\right\}^{-1}C_{nR}A_{nR}^{-1}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}s_{i}(\hat{\theta}_{R})\right)$$