Measuring the Health Effects of Implicit Air Pollution Trades on $\ensuremath{\mathfrak{S}_{\text{TM}}}$ the European Carbon Market Laure de Preux¹ Dana Kassem² Ulrich J. Wagner³ ¹Imperial College London ²Zalando SE ³University of Mannheim UC Davis Energy and Environmental Economics Seminar November 29, 2023

High mitigation costs hinder progress towards global climate targets

Direct benefits of CO_2 abatement are global, but co-benefits are local

Implications:

- Co-benefits change net cost of abatement and hence the incentives for global cooperation (e.g. China)
- Within countries and regions, co-benefits are spatially heterogeneous and could thus have significant distributional impacts

Case in point: Decentralized climate policies such as cap-and-trade

Example: Local effects of cap-and-trade (1)

RWE Niederaußem (DE): 26.3 Mt CO₂

PGE Belchatow (PL): 29.5 Mt CO₂

- Market forces shift CO₂ emissions to emitters with highest abatement costs
- Aggregate CO₂ emissions remain constant (cap-and-trade)
- Locus of CO₂ emission doesn't matter because damages are global.

Example (2): But implicit co-pollutant trades are not ton-for-ton

Example: Local Effects of cap-and-trade (3)

View of Niederaußem plant from Cologne (1.1 million inhabitants)

Adverse health impacts of co-pollution trades scale with population exposed

What this paper does

Research questions

- 1. How large were air pollution-related health co-benefits associated with mandated CO₂ emissions reductions in the EU carbon market between 2005 and 2015?
- 2. Did the decentralized cap-and-trade policy for CO₂ emissions deliver greater or smaller co-benefits than centralized (uniform) emissions reductions would have delivered?

Methods and Contributions

- 1. Gather comprehensive EU-wide data on co-pollutant emissions at thousands of industrial facilities regulated in the EU ETS
- 2. Develop an empirical framework for estimating how permit trading affected the spatial distribution of co-pollution emissions
- 3. Employ novel state-of-the-art model of atmospheric chemical transport to translate co-pollution impact into spatially explicit estimates of co-benefits

Preview of Main Result

Between 2005 and 2015, EU-wide trading avoided three times more premature deaths due to $PM_{2.5}$ exposure than a counterfactual with uniform emissions reduction.

Figure: Change in $PM_{2.5}$ -related Premature Deaths due to 15% reduction in regulated CO_2

Related Literature

- Ancillary benefits: 30% to over 100% of the private costs of carbon abatement (Aunan et al. (2007); Burtraw et al. (2003); Ekins (1996); Ekin (1996); Pittel and Rübbelke (2008); Rypdal et al. (2007); van Vuuren et al. (2006); Driscoll et al. (2015); IPCC (2014a); IPCC (2014b))
- Environmental justice: Fowlie et al. (2012), Grainger and Ruangmas (2018); Hernandez-Cortes and Meng (2023), Sheriff (2023)
- Optimal policy design in multipollutant settings when abatement costs are private information (Pittel and Ruebbelke (2008); Ambec and Coria (2013); Bonilla et al. (2017))

The European Union Emissions Trading Scheme (EU ETS)

- ► Cap-and-trade system for >15.000 stationary CO₂ emitters :
 - Fossil-fuel fired power plants
 - Energy-intensive manufacturing firms
 - (+ Airlines)
- ▶ Initial cap > 2 billion tons of CO_2 (\approx half of EU emissions)
- Linear reduction factors 1.74% (2013-2020), 2.2% (2021-)

How does the EU ETS work?

- Define participating emitters (pollutant, sectors, countries, time period)
- Cap the sum of emissions by all participants
- ▶ One pollution permit (EUA) entitles holder to emit 1 ton of CO₂ (equivalent)
- Allocation of EUAs to emitters (free-of-charge or via permit auctions)
- Every 12 months: participants report emissions and cancel corresponding amount of EUAs
 - Surplus: sell or bank EUAs
 - Deficit: abate emissions, buy EUAs or borrow them against future allocation.

Still Dreliminary: DData

Main Datasets

- 1. European Union Transaction Log (EUTL)
 - Register of all ETS installations
 - Verified emissions and permit allocations
 - Years: annual from 2005
- 2. European Pollutant Release and Transfer Register (E-PRTR)
 - Pollutant releases to air, water and land
 - 91 Pollutants, between 1 and 50 per facility
 - Reporting threshold for pollutant
 - Years: 2001, 2004, annual from 2007

Overview of Data Sources and Entity Linking

Final dataset:

 >8,000 EUTL installations, out of >15,000, matched to EPRTR facilities

 covers 95.5% of EU ETS emissions

Trends in CO₂ Emissions by Regulatory Status

Computing Air Pollution Emissions under Different Policies

We consider the **observed cap reduction (2005-15) of 287 Mt (15%)**, implemented in two alternative policies:

I. Uniform Emissions Reduction?

- Each emitter reduces their CO₂ emissions by 15%
- Co-pollution emissions are also scaled in proportion to CO₂, using the median of emitter-specific pollutant-to-CO₂ ratios (observed over multiple years).

II. EU ETS

- Cap reduction by 15% from 2005 levels
- Free permit allocation:

Observed reduction in free permit allocation (\gg 15%) 2

Permit price P and abatement: Endogenously determined

Economic Model of Facility Emissions under Cap-and-Trade

Demand for CO₂ by facility *i* in period *t*:

- P_t is the price of a permit
- $\triangleright \ \Omega_t$ is the cap in year t
- $\vec{\xi_t}$ price shifters
- ω_{it} is number of permits obtained free of charge, $(\sum_{i} \omega_{it} \leq \Omega_t)$

 $P_{Q_{i,t}} = e\left(P(\Omega_t, \vec{\xi_t}), \omega_{it}, \vec{x_{it}}\right)$

x demand shifters

• Emissions response to policy parameters Ω and ω_{it} : \circ

$$de_{it} = \frac{\partial e_{it}}{\partial P_t} \frac{\partial P_t}{\partial \Omega_t} d\Omega_t + \frac{\partial e_{it}}{\partial \omega_{it}} d\omega_{it}$$

(1)

Econometric approach

Demand for CO_2 emissions at plant *i*:

 $e_{it} = \alpha_i + \beta P_t + z'_i \beta_z P_t + \beta_\omega \omega_{it} + \mu_{ct} + \theta_{jt} + \nu_{it}$ (2)

where:

- P_t CO₂ permit price
- z_i emitter characteristics: electricity vs. industry; fuel type; country

 ω_{it} number of permits received free of charge

- μ_{ct} country by year fixed-effect
- θ_{jt} sector by year fixed-effect
- α_i plant fixed effect

Common price effect β not identified.

Identifying the common price effect β

Market clearing on the permit market:

$$E \equiv \sum_{\substack{i=1\\ \text{Aggregate emissions}}}^{N} e_i(P(\Omega), \omega_i) = \Omega \equiv \sum_{\substack{i=1\\ \text{the cap}}}^{N} \omega_i$$
(3)
Totally differentiate and divide by $d\Omega_t$ (the change in cap):
$$\sum_{\substack{n\\ \text{OP}_t}}^{N} \frac{\partial e_{it}}{\partial P_t} \cdot \frac{dP_t}{d\Omega_t} + \sum_{\substack{n\\ \text{OW}_t}}^{N} \frac{\partial e_{it}}{\partial \Omega_t} \frac{\partial \omega_{it}}{\partial \Omega_t} = 1$$
(4)

Substitute coefficients from (2), $\partial \omega / \partial \Omega = 1/N$ and solve for average price effect β :

$$\beta = \frac{1 - \beta_{\omega}}{N} \frac{dE_t}{dP_t} \bigg|_{E=\Omega} - \frac{1}{N} \left(\sum_i z'_i \beta_z \right)^{O_0}$$

・ロト・西ト・西ト・西・ うらぐ

Calibrating the slope of aggregate permit demand

Figure: Permit price crash in April 2006

Results I: Emissions Changes

Estimates of CO₂ Emissions Demand (Annual Panel Data 2005-17)

	(1)	
VARIABLES	Baseline Model	
wit	0.132***	
	(0.027)	
P_t	°/in	0.
×MANUFACTURIN	G -3,050	en ^A D; DI _{CASC} N
$\times PP COAL$	-5,480	an. N
×PP COAL	(11,858)	No No
$\times PP OTHER$	-2,652	N/Q-
	(7,983)	-95-
imes PP OIL	1,607	9°
	(6,034)	40
imesPP GAS	0,152	0
$\times \omega_i^0$	(8,054) -0.001	
$\times \omega_{\tilde{i}}$	(0.0009)	
	, ,	
Observations	50,222	
R-squared	0.958	
Country $ imes$ Year FE	\checkmark	
Industry $ imes$ Year FE	\checkmark	
Facility FE	\checkmark	
Collbrated	a construction of the second	

 $e_{it} = \alpha_i + \beta P_t + z'_i \beta_z P_t + \beta_\omega \omega_{it} + \mu_{ct} + \theta_{jt} + \nu_{it}$

Notes:

- Permit price is interacted with dummies for emitter group and country.
- Table reports average price coefficients by emitter group
- Manufacturing is the excluded emitter group

Alternative Approach: Carbon Price Elasticities in the Power Sector

 Identify generation elasticity from daily variation in power generation and CO₂ permit prices

For each technology j and country c, model log aggregate generation y on day d as

$$y_{icd} = \mu_c + \beta_c^p p_d + \sum_f \beta_c^f w_{cd}^f + \beta_c^E \log(NET \ LOAD)_{cd} + g(TIME)_{icd} + \xi_{it}$$
(6)

where:

 p_d log CO₂ permit price w_{cd}^f log daily price of fossil fuel fand g(TIME) controls for year, month and weekday.

Daily Generation Data from ENTSO-E Transparency Platform

Qlin	(1)	(2)	(3)	(4)	(5)
VARIABLES	mean	sd	min	max	N
EUA permit price	2.23.4	17.1	3.9	88.9	10,922
Nat. Gas price	25.4	26.3	3.1	451.3	10,922
Coal price	70.0	30.2	34.7	236.7	10,922
Net load	29,255	19,320	2,690	80,245	10,922
Log Generation		γ_{c}) x		
Fossil Gas	8.023	1.036	0.296	10.09	10,922
Hard Coal	7.552	1.707	-8.476	9.907	9,958
Oil	4.209	1.731	-5.075	6.636	4,622
Lignite	9.040	0.526	7.956	9.880	3,391
Ozone season	0.587	0.492	0	1 0	10,922
EUA price ozone season	14.06	17.47	0	64.66	10,922

Table Daily Panel of Country-by-Fuel Generation; 2015-2021

オロトオ団トオミトオミト ヨーのへぐ

Pooled Estimation Results

Syn Dependent variable is log generation								
VARIABLES	(1) Lignite	(3) Hard Coal	(5) Oil	(7) Natural Gas				
nip								
$\ln P_{CO2}$	-0.113	-0.218	0.388	0.300***				
	(0.0561)	(0.226)	(0.332)	(0.0473)				
In P _{GAS}	0.194	0.465**	0.00671	-0.237**				
	(0.133)	(0.169)	(0.338)	(0.102)				
In P _{COAL}	-0.122	-0.0858	-0.0672	0.0547				
	(0.158)	(0.241)	(0.198)	(0.110)				
In Net Load	0.825	3.777*	2.559*	1.857***				
	(0.147)	(1.905)	(1.117)	(0.346)				
			Cix					
Observations	3,391	9,958	4,622	10,922				
R-squared	0.922	0.774	0.595	0.831				
Includes FE for country-by-year, month, day of week. Standard errors clustered at country level *** p<0.01, ** p<0.05, * p<0.1								

Pooled Estimation Results II

Dependent va	ariable is l	log gene	eration		
Still	(1)	(3)	(5)	—	
VARIABLES	Coal	Òíl	NatGas		
Clip.	,				
$\ln P_{CO2}$	-0.214	0.388	0.300***		
"AM	(0.173)	(0.332)	(0.0473)		
In P _{GAS}	0.426**	0.00671	-0.237**		
$\mathcal{O}_{\mathcal{O}}$	(0.135)	(0.338)	(0.102)		
In P _{COAL}	-0.114	-0.0672	0.0547		
	(0.180)	(0.198)	(0.110)		
In Net Load	3.428*	2.559*	1.857***		
	(1.794)	(1.117)	(0.346)		
Country $ imes$ year FE	Y	Ý.	· Y		
Calendar Month FE	Y	Y Y	ζAΥ		
Day-of-week FE	Y	Y	O.Y		
			0,		
Observations	13,349	4,622	10,922) sc	
R-squared	0.795	0.595	0.831	(©	
Standard errors ar	e clustered a	at the cou	ntry level	_	
*** p<0.0	01, ** p<0.0)5, * p<0	.1		
				▲□▶ ▲圖▶ ▲国▶ ▲国▶ ― 国	ら の

Gas-fired Power Generation and CO₂ permit prices

VARIABLES	DE 🔨	ES	FR	IT	NL	PL	PT
		ni					
In P _{CO2}	0.150*	0.272***	0.863***	0.157***	0.244***	0.298***	-0.0935
	(0.0776)	(0.105)	J (0.256)	(0.0245)	(0.0465)	(0.0760)	(0.166)
In P _{GAS}	-0.506***	-0.293**	-0.205	-0.170***	-0.426***	-0.307***	0.258
	(0.0716)	(0.125)	(0.133)	(0.0250)	(0.0432)	(0.0588)	(0.157)
In P _{COAL}	-0.0235	0.483***	-0.541***	0.150***	-0.0262	0.360***	-0.203
	(0.0893)	(0.153)	(0.165)	(0.0305)	(0.0726)	(0.0695)	(0.222)
In Net Load	1.923***	3.378***	4.359***	1.610***	2.484***	0.514***	2.558**
	(0.231)	(0.278)	(0.318)	(0.0566)	(0.255)	(0.196)	(0.554)
					1 and		
Observations	1,718	1,109	800	1,716	1,725	1,655	1,082
R-squared	0.535	0.522	0.523	0.930	0.507	0.748	0.330

Coal-fired Power Generation and CO_2 permit prices

Dependent variable is log generation									
VARIABLES	DE	ES	FR	IT	NL	PL	PT		
	Q110								
In P _{CO2}	-0.172***	0.897***	0.383	0.0444	-0.514***	0.00389	0.108		
	(0.0590)	(0.114)	(1.729)	(0.0515)	(0.0481)	(0.0299)	(0.252)		
In P _{GAS}	0.551***	-0.0170	-1.789*	0.0316	0.684***	0.0417*	0.641**		
	(0.0530)	(0.107)	(0.977)	(0.0475)	(0.0519)	(0.0252)	(0.264)		
In P _{COAL}	-0.504***	0.878***	2.416**	0.0452	-0.373***	0.00463	-0.966***		
	(0.0702)	(0.141)	(0.972)	(0.0650)	(0.0642)	(0.0351)	(0.299)		
In Net Load	1.837***	1.487***	7.085***	0.781***	0.493**	1.606***	1.526**		
	(0.227)	(0.309)	(1.672)	(0.108)	(0.206)	(0.112)	(0.632)		
Observations	3,436	1,109	527	1,716	1,722	3,346	656		
R-squared	0.375	0.856	0.590	0.616	0.666	0.182	0.392		
Robust standard errors in parentheses									

*** p<0.01, ** p<0.05, * p<0.1

Computing Emissions for a Tightening of the Cap by 15%

Step 1: Assume changes in cap and free allocation:

Step 2: Simulate resulting changes in emissions of CO_2 and of co-pollutant p

 $\Delta \Omega = -0.15 \Omega_0$ $\Delta \omega_i = \omega_{i,2015} - \omega_{i,2005}$

Change in Co-pollutant Emissions by Emitter Type (Cap-and-Trade)

Change in NO_x Emissions by Emitter Type (Trading vs. Uniform)

Changes in Emissions of Main Co-pollutants (Trading vs. Uniform)

Aggregating Pollution Changes to Co-Benefits

Compute co-benefits using pollution-specific environmental cost estimates

Price δ^p is the mid-point estimate of health damages resulting from 1 kg of pollutant p being released by the average emitter in the EU-28 countries. Data from De Bruyn et al. (2018).

Counterfactual Change in Environmental Damages (bn. EUR)

S.x.,	Δ Damages		
A. Power Plants Natural Gas Oil Coal Other	Unweighted	Pop-Weighted	
A. Power Plants	-156.8	-79.0	
Natural Gas	7.5	5.5	
Oil	-2.1	-3.2	
Coal	-150.0	-73.9	
Other	-12.3	-7.5	
B. Manufacturing	-12.3	-56.8	
Total	-224.7	-135.8	
	94010		

Counterfactual Change in Environmental Damages (bn. EUR)

	Str.	Δ Damages	
	Dro	Unweighted	Pop-Weighted
	A. Power Plants	-156.8	-79.0
	A. Power Plants Natural Gas Oil Coal	7.5	5.5
	Oil	-2.1	-3.2
	Coal	-150.0	-73.9
	Other	-12.3	-7.5
	B. Manufacturing	67.9	-56.8
	Total	-224.7	-135.8
	vs. uniform 15% reduction	-16.9	940, -16.1
Trading increases co-benefits by factor of more than eight			

Owing to much stronger abatement at coal-fired power plants and manufacturing

Getting atmospheric pollution dispersion right

Environmental prices

- + easy to use
- + broad pollutant coverage
- omit complexity of atmospheric pollution dispersion, which is governed by highly non-linear function of atmospheric chemistry, weather, topography
- We care about atmospheric dispersion because spatial heterogeneity in pollution exposure could strongly affect results

Solution: Combine econometric model with state-of-the-art Chemical Transport Model

Results II: Atmospheric Dispersion and Atmospheric Disp Population Exposure

A Nested **GE** S-Chem Adjoint model for Europe

- Chemical Transport Model built by HEAL-Project team (Gu et al., 2023a,b)
- ▶ Input: Primary pollutants NO_x, SO₂, NH₃, (...)
- Outputs:
 - Final Gridded (0.25° \times 0.3125°) population exposure to PM_{2.5}, O₃
 - Source appointment: Sensitivity of exposure to grid-level emissions more
- Gu et al. (2023a) combine population exposures with Global Burden of Disease 2019 (Murray et al., 2020) to estimate pollution-related premature deaths:

$$J_{PM_{2.5}} = \sum_{L} \sum_{A} \sum_{k \in D} \sum_{(I,J) \in k} (POP_{I,J,A} \times MOR_{I,J,A,L} \times AF_{I,J,A,L})$$

Cir

where $AF_{I,J,A,L} = \frac{RR_{I,J,A,L}-1}{RR_{I,J,A,L}}$ and L \in {COPD, IHD, LRI, LC, T2D, stroke}

$PM_{2.5}$ exposure, population, and health burden in Europe

449,813 PM_{2.5}-related premature deaths in 2015 (relative to total pop. 598.97m)

265,328 deaths (59%) due to anthropogenic NO_x, NH₃, SO₂, OC, BC, SOAP

Health Benefits of Reducing Anthropogenic PM2.5 Pollution, 2005-2015

Change in $PM_{2.5}$ -related deaths: Uniform emissions reductions

Net change in premature deaths: -3,994.

Change in $PM_{2.5}$ -related deaths: With permit trading

Net change in premature deaths: -12,474.

Trading gives 3x larger reduction in premature deaths than uniform reduction.

Implications of Co-Benefits Estimates for Cost-Benefit Analysis

1. Co-benefits vs. direct benefits

- Assume €190/tCO₂ per ton for the social cost of carbon (Rennert et al, 2022 nature)
- Assume low VSL of €2.7m: 'Co-pollutant cost of carbon': €117/tCO₂

PM_{2.5}-related health co-benefits are on par with direct benefits 2. Co-benefits vs. abatement costs

 Marginal abatement costs are bounded from above by the carbon price

= 3.9

Upper bound on abatement costs:

$$287Mt \cdot \frac{\notin 30}{t} = \notin 8.6 \text{ bn}$$

 \Rightarrow EU ETS is very cost effective.

Spotlight I: Distributional Issues: NOx Hotspots change

Changes in PM2.5-related Premature Deaths by NOx Emitter (Trading vs. Uniform)

Analyzing distribution of health co-benefits and co-damages requires CTM forwar runs (computationally expensive).

Spotlight II: Why the CTM matters – NO_x emissions vs. damages

Accounting for atmospheric chemistry and population exposure changes the ranking of which one is the worst NO_x emitter group.

Spotlight III: Health Burden of NO_x co-emissions beyond $PM_{2.5}$

- NO_x is the main precursor to ozone pollution, along with CO and volatile organic compounds (VOCs)
- Calls for assessment of ozone-related health burden.
- Challenging because of seasonality and non-linearity of ozone formation
- Could lead to different conclusions because NO_x sensitivity of ozone is negative in NO_x-saturated regions (Gu et al., 2023b);

Conclusions

- The EU ETS redistributed air pollution in major ways across space
- Valuation of co-pollution changes implies high (private) benefit-cost ratio of EU ETS
- ▶ PM_{2.5} related Co-benefits on par with direct benefits of CO₂ abatement
- Combining econometric model with CTM yields sizable mortality reductions
- Letting polluters trade CO₂ increases co-benefits three-fold relative to uniform reductions.

