

Measuring the Health Effects of Implicit Air Pollution Trades on the European Carbon Market

Laure de Preux¹ Dana Kassem² Ulrich J. Wagner³

¹Imperial College London

²Zalando SE

³University of Mannheim

UC Davis

Energy and Environmental Economics Seminar

November 29, 2023

HEAL Project

High mitigation costs hinder progress towards global climate targets

Global greenhouse gas emissions and warming scenarios

Our World
in Data

- Each pathway comes with uncertainty, marked by the shading from low to high emissions under each scenario.
- Warming refers to the expected global temperature rise by 2100, relative to pre-industrial temperatures.

Annual global greenhouse gas emissions
in gigatonnes of carbon dioxide-equivalents

150 Gt

100 Gt

50 Gt

Greenhouse gas emissions
up to the present

0

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

No climate policies

4.1 – 4.8 °C

→ expected emissions in a baseline scenario if countries had not implemented climate reduction policies.

Current policies

2.5 – 2.9 °C

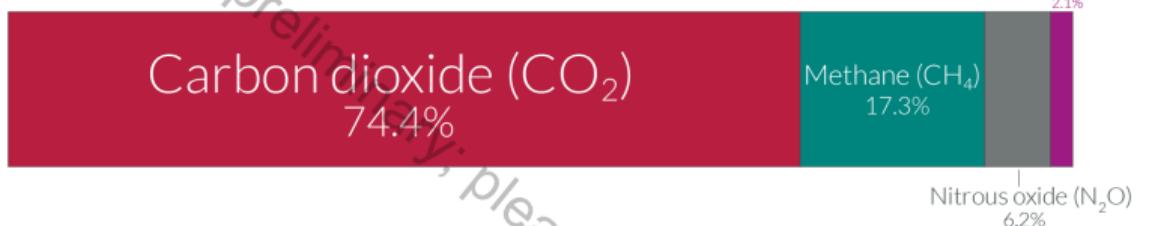
→ emissions with current climate policies in place result in warming of 2.5 to 2.9°C by 2100.

Pledges & targets (2.1 °C)

→ emissions if all countries delivered on reduction pledges result in warming of 2.1°C by 2100.

2°C pathways

1.5°C pathways


Data source: Climate Action Tracker (based on national policies and pledges as of November 2021).
OurWorldinData.org – Research and data to make progress against the world's largest problems.

Last updated: April 2022.
Licensed under CC-BY by the authors Hannah Ritchie & Max Roser.

Climate policy targeted at abating carbon dioxide (CO₂)

Global greenhouse gas emissions by gas

Greenhouse gas emissions are converted to carbon dioxide-equivalents (CO₂eq) by multiplying each gas by its 100-year 'global warming' potential value: the amount of warming one tonne of the gas would create relative to one tonne of CO₂ over a 100-year timescale. This breakdown is shown for 2016.

OurWorldInData.org – Research and data to make progress against the world's largest problems.
Source: Climate Watch, the World Resources Institute (2020).

Licensed under CC-BY by the author Hannah Ritchie.

- ▶ Combustion of fossil fuels is main source of CO₂ emissions
- ▶ CO₂ jointly emitted with multiple air pollutants
- ▶ Abating CO₂ emissions thus reduces harmful co-pollution
- ⇒ ancillary benefit / **co-benefit** of climate policy

Direct benefits of CO₂ abatement are global, but co-benefits are local

Implications:

- ▶ Co-benefits change net cost of abatement and hence the incentives for global cooperation (e.g. China)
- ▶ Within countries and regions, co-benefits are spatially heterogeneous and could thus have significant distributional impacts

Case in point: Decentralized climate policies such as cap-and-trade

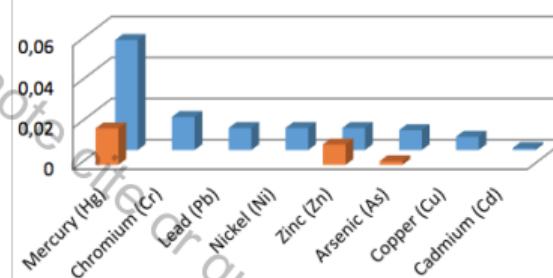
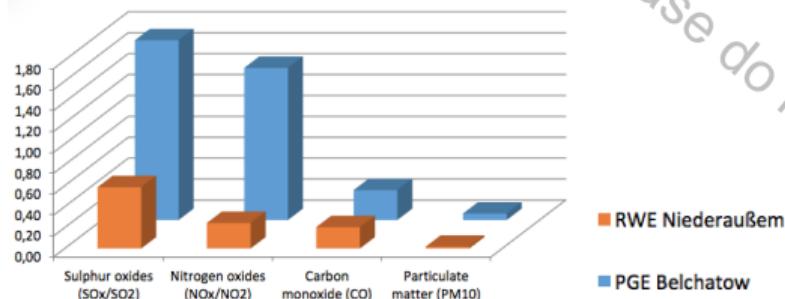
Example: Local effects of cap-and-trade (1)

RWE Niederaußem (DE): 26.3 Mt CO₂

PGE Belchatow (PL): 29.5 Mt CO₂

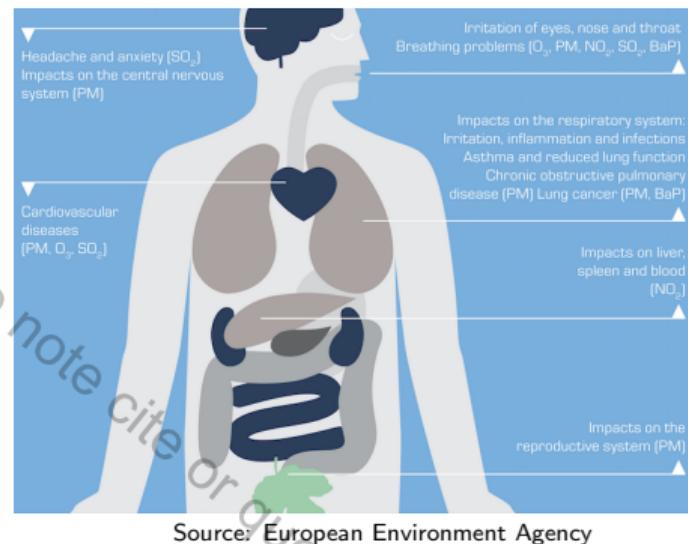
1t CO_2

- ▶ Market forces shift CO₂ emissions to emitters with highest abatement costs
- ▶ Aggregate CO₂ emissions remain constant (**cap-and-trade**)
- ▶ Locus of CO₂ emission doesn't matter because damages are global.



Example (2): But implicit co-pollutant trades are not ton-for-ton

RWE Niederaußem (DE): 26.3 Mt CO₂

PGE Belchatow (PL) 29.5 Mt CO₂



kilograms per ton of CO₂

grams per ton of CO₂ [more](#)

Example: Local Effects of cap-and-trade (3)

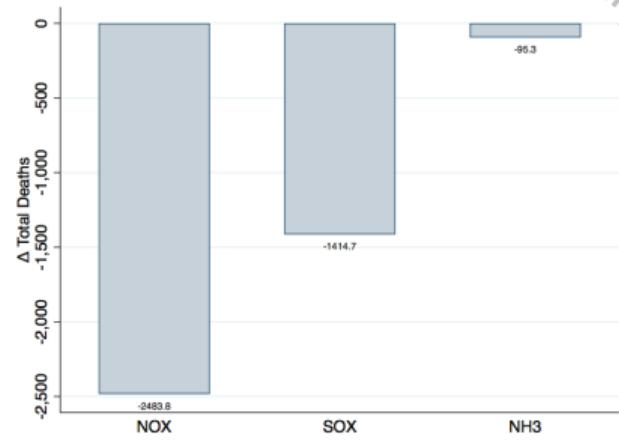
View of Niederaußem plant from Cologne (1.1 million inhabitants)

Adverse health impacts of co-pollution trades scale with population exposed

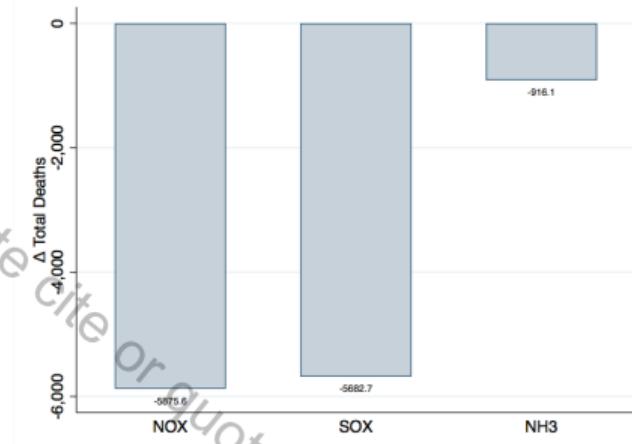
What this paper does

Research questions

1. How large were air pollution-related health co-benefits associated with mandated CO₂ emissions reductions in the EU carbon market between 2005 and 2015?
2. Did the decentralized cap-and-trade policy for CO₂ emissions deliver greater or smaller co-benefits than centralized (uniform) emissions reductions would have delivered?


Methods and Contributions

1. Gather comprehensive EU-wide data on co-pollutant emissions at thousands of industrial facilities regulated in the EU ETS
2. Develop an empirical framework for estimating how permit trading affected the spatial distribution of co-pollution emissions
3. Employ novel state-of-the-art model of atmospheric chemical transport to translate co-pollution impact into spatially explicit estimates of co-benefits


Preview of Main Result

Between 2005 and 2015, EU-wide trading avoided three times more premature deaths due to $PM_{2.5}$ exposure than a counterfactual with uniform emissions reduction.

Figure: Change in $PM_{2.5}$ -related Premature Deaths due to 15% reduction in regulated CO_2

(a) Uniform Reduction: -3,994

(b) Cap-and-Trade: -12,474

Related Literature

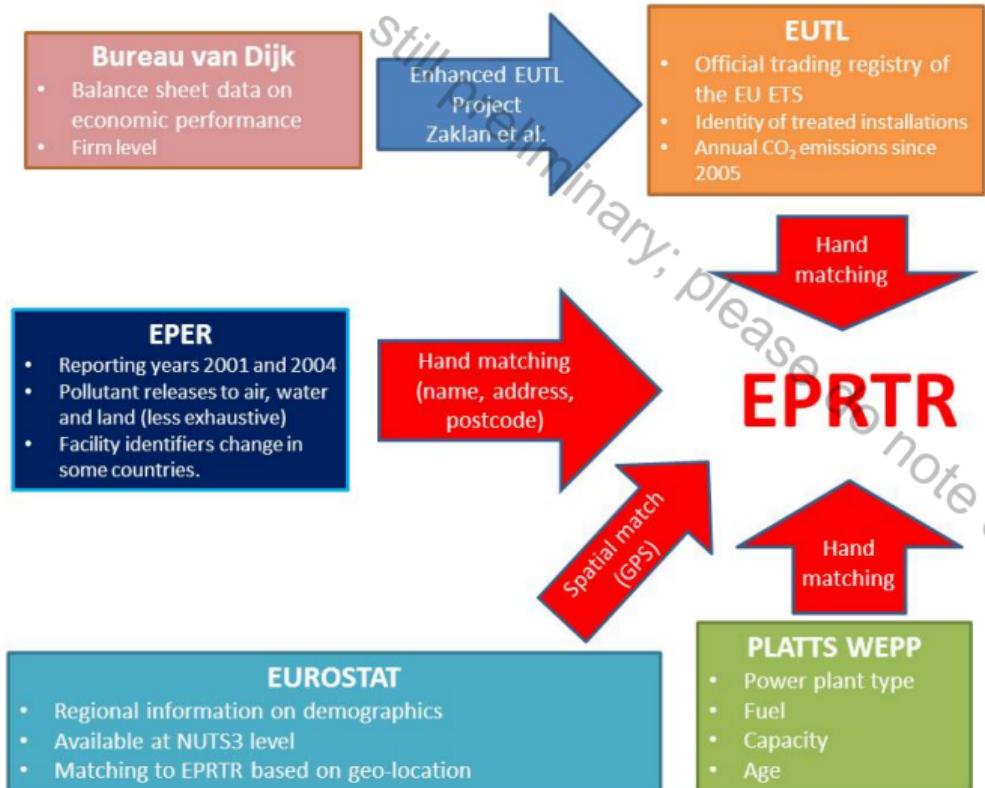
- ▶ Ancillary benefits: 30% to over 100% of the private costs of carbon abatement (Aunan et al. (2007); Burtraw et al. (2003); Ekins (1996); Ekin (1996); Pittel and Rübelke (2008); Rypdal et al. (2007); van Vuuren et al. (2006); Driscoll et al. (2015); IPCC (2014a); IPCC (2014b))
- ▶ Environmental justice: Fowlie et al. (2012), Grainger and Ruangmas (2018); Hernandez-Cortes and Meng (2023), Sheriff (2023)
- ▶ Optimal policy design in multipollutant settings when abatement costs are private information (Pittel and Ruebelke (2008); Ambec and Coria (2013); Bonilla et al. (2017))

The European Union Emissions Trading Scheme (EU ETS)

- ▶ Cap-and-trade system for >15.000 stationary CO₂ emitters :
 - ▶ Fossil-fuel fired power plants
 - ▶ Energy-intensive manufacturing firms
 - ▶ (+ Airlines)
- ▶ Initial cap > 2 billion tons of CO₂ (≈ half of EU emissions)
- ▶ Linear reduction factors 1.74% (2013-2020), 2.2% (2021-)

How does the EU ETS work?

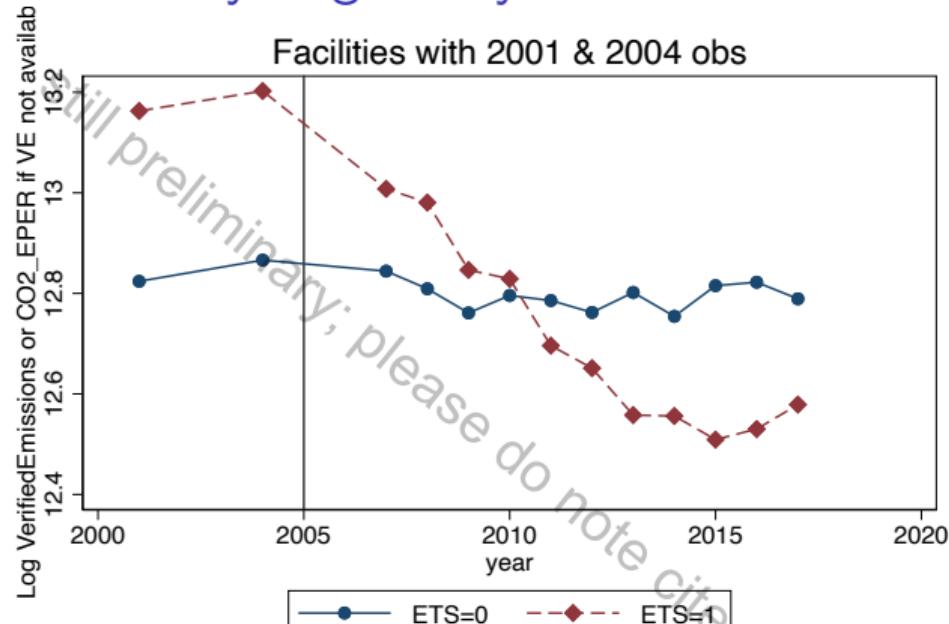
- ▶ Define participating emitters (pollutant, sectors, countries, time period)
- ▶ Cap the sum of emissions by all participants
- ▶ One pollution permit (EUA) entitles holder to emit 1 ton of CO₂ (equivalent)
- ▶ Allocation of EUAs to emitters (free-of-charge or via permit auctions)
- ▶ Every 12 months: participants report emissions and cancel corresponding amount of EUAs
 - ▶ Surplus: sell or bank EUAs
 - ▶ Deficit: abate emissions, buy EUAs or borrow them against future allocation.


Data

still preliminary; please do note cite or quote

Main Datasets

1. European Union Transaction Log (EUTL)
 - ▶ Register of all ETS installations
 - ▶ Verified emissions and permit allocations
 - ▶ Years: annual from 2005
2. European Pollutant Release and Transfer Register (E-PRTR)
 - ▶ Pollutant releases to air, water and land
 - ▶ 91 Pollutants, between 1 and 50 per facility
 - ▶ Reporting threshold for pollutant
 - ▶ Years: 2001, 2004, annual from 2007


Overview of Data Sources and Entity Linking

Final dataset:

- ▶ >8,000 EUTL installations, out of >15,000, matched to EPRTR facilities
- ▶ covers 95.5% of EU ETS emissions

Trends in CO₂ Emissions by Regulatory Status

14897 obs (ETS=13096, NETS=1801), mean = 12.79
binscatter ln_CO2_TotEUEP year if Use_CO2_TotEUEP

Caveat: Unregulated EPRTR facilities with CO₂ emissions below 100,000 tons do not report

more trends

Research Design

still preliminary, please do note cite or quote

Computing Air Pollution Emissions under Different Policies

We consider the **observed cap reduction (2005-15) of 287 Mt (15%)**, implemented in two alternative policies:

I. Uniform Emissions Reduction:

- ▶ Each emitter reduces their CO₂ emissions by 15%
- ▶ Co-pollution emissions are also scaled in proportion to CO₂, using the median of emitter-specific pollutant-to-CO₂ ratios (observed over multiple years).

II. EU ETS

- ▶ Cap reduction by 15% from 2005 levels
- ▶ Free permit allocation:
Observed reduction in free permit allocation ($\gg 15\%$)
- ▶ Permit price P and abatement: Endogenously determined

Economic Model of Facility Emissions under Cap-and-Trade

- Demand for CO₂ by facility i in period t :

$$e \left(P(\Omega_t, \vec{\xi}_t), \omega_{it}, \vec{x}_{it} \right)$$

- P_t is the price of a permit
- Ω_t is the cap in year t
- $\vec{\xi}_t$ price shifters
- ω_{it} is number of permits obtained free of charge, ($\sum_i \omega_{it} \leq \Omega_t$)
- \vec{x} demand shifters
- Emissions response to policy parameters Ω and ω_{it} :

$$de_{it} = \frac{\partial e_{it}}{\partial P_t} \frac{\partial P_t}{\partial \Omega_t} d\Omega_t + \frac{\partial e_{it}}{\partial \omega_{it}} d\omega_{it} \quad (1)$$

Econometric approach

Demand for CO₂ emissions at plant i :

$$e_{it} = \alpha_i + \beta P_t + z_i' \beta_z P_t + \beta_\omega \omega_{it} + \mu_{ct} + \theta_{jt} + \nu_{it} \quad (2)$$

where:

P_t CO₂ permit price

z_i emitter characteristics: electricity vs. industry; fuel type; country

ω_{it} number of permits received free of charge

μ_{ct} country by year fixed-effect

θ_{jt} sector by year fixed-effect

α_i plant fixed effect

Common price effect β not identified.

Identifying the common price effect β

Market clearing on the permit market:

$$\underbrace{E \equiv \sum_{i=1}^N e_i(P(\Omega), \omega_i)}_{\text{Aggregate emissions}} = \Omega \equiv \underbrace{\sum_{i=1}^N \omega_i}_{\text{the cap}} \quad (3)$$

Totally differentiate and divide by $d\Omega_t$ (the change in cap):

$$\sum_{i=1}^N \frac{\partial e_{it}}{\partial P_t} \cdot \frac{dP_t}{d\Omega_t} + \sum_{i=1}^N \frac{\partial e_{it}}{\partial \omega_{it}} \frac{\partial \omega_{it}}{\partial \Omega_t} = 1 \quad (4)$$

Substitute coefficients from (2), $\partial \omega / \partial \Omega = 1/N$ and solve for average price effect β :

$$\beta = \frac{1 - \beta_\omega}{N} \left. \frac{dE_t}{dP_t} \right|_{E=\Omega} - \frac{1}{N} \left(\sum_i z'_i \beta_z \right)$$

Calibrating the slope of aggregate permit demand

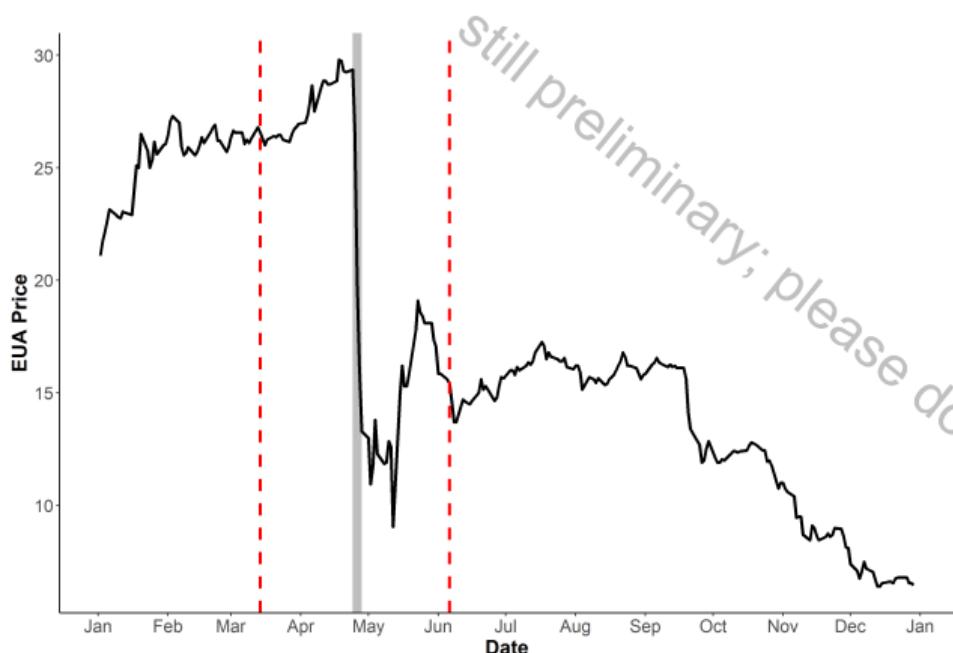


Figure: Permit price crash in April 2006

- ▶ Publication of verified emissions revealed that $E(P_0) < \Omega_0 \Rightarrow$ permits were not scarce (see Bushnell et al., 2013)
- ▶ Price reaction traces out the slope of aggregate emissions curve $E(P)$

$$\widehat{\frac{\Delta P}{\Delta \Omega}} \equiv \frac{P_1 - P_0}{\Omega_{2005} - E_{2006}^*} \quad (5)$$

- ▶ take permit prices 6 weeks before (P_0) and after (P_1) publication

Results I: Emissions Changes

still preliminary, please do not cite or quote

Estimates of CO₂ Emissions Demand (Annual Panel Data 2005-17)

VARIABLES	(1)	
	Baseline Model	
ω_{it}	0.132*** (0.027)	
P_t		
\times MANUFACTURING	-3,050	
\times PP COAL	-5,480 (11,858)	
\times PP OTHER	-2,652 (7,983)	
\times PP OIL	1,607 (6,034)	
\times PP GAS	6,132 (8,054)	
$\times \omega_i^0$	-0.001 (0.0009)	
Observations	50,222	
R-squared	0.958	
Country \times Year FE	✓	
Industry \times Year FE	✓	
Facility FE	✓	

Calibrated parameter

Estimates averaged across countries

$$e_{it} = \alpha_i + \beta P_t + z_i' \beta_z P_t + \beta_\omega \omega_{it} + \mu_{ct} + \theta_{jt} + \nu_{it}$$

Notes:

- ▶ Permit price is interacted with dummies for emitter group and country.
- ▶ Table reports average price coefficients by emitter group
- ▶ Manufacturing is the excluded emitter group

Alternative Approach: Carbon Price Elasticities in the Power Sector

- ▶ Identify generation elasticity from daily variation in power generation and CO₂ permit prices

For each technology j and country c , model log aggregate generation y on day d as

$$y_{icd} = \mu_c + \beta_c^p p_d + \sum_f \beta_c^f w_{cd}^f + \beta_c^L \log(\text{NET LOAD})_{cd} + g(\text{TIME})_{icd} + \xi_{it} \quad (6)$$

where:

p_d log CO₂ permit price

w_{cd}^f log daily price of fossil fuel f

and $g(\text{TIME})$ controls for year, month and weekday.

Daily Generation Data from ENTSO-E Transparency Platform

Table: Daily Panel of Country-by-Fuel Generation; 2015-2021

VARIABLES	(1) mean	(2) sd	(3) min	(4) max	(5) N
EUA permit price	23.4	17.1	3.9	88.9	10,922
Nat. Gas price	25.4	26.3	3.1	451.3	10,922
Coal price	70.0	30.2	34.7	236.7	10,922
Net load	29,255	19,320	2,690	80,245	10,922
Log Generation					
Fossil Gas	8.023	1.036	0.296	10.09	10,922
Hard Coal	7.552	1.707	-8.476	9.907	9,958
Oil	4.209	1.731	-5.075	6.636	4,622
Lignite	9.040	0.526	7.956	9.880	3,391
Ozone season	0.587	0.492	0	1	10,922
EUA price ozone season	14.06	17.47	0	64.66	10,922

Pooled Estimation Results

VARIABLES	Dependent variable is log generation			
	(1) Lignite	(3) Hard Coal	(5) Oil	(7) Natural Gas
$\ln P_{CO2}$	-0.113 (0.0561)	-0.218 (0.226)	0.388 (0.332)	0.300*** (0.0473)
$\ln P_{GAS}$	0.194 (0.133)	0.465** (0.169)	0.00671 (0.338)	-0.237** (0.102)
$\ln P_{COAL}$	-0.122 (0.158)	-0.0858 (0.241)	-0.0672 (0.198)	0.0547 (0.110)
In Net Load	0.825 (0.147)	3.777* (1.905)	2.559* (1.117)	1.857*** (0.346)
Observations	3,391	9,958	4,622	10,922
R-squared	0.922	0.774	0.595	0.831

Includes FE for country-by-year, month, day of week.

Standard errors clustered at country level

*** p<0.01, ** p<0.05, * p<0.1

Pooled Estimation Results II

Dependent variable is log generation

VARIABLES	(1) Coal	(3) Oil	(5) NatGas
$\ln P_{CO_2}$	-0.214 (0.173)	0.388 (0.332)	0.300*** (0.0473)
$\ln P_{GAS}$	0.426** (0.135)	0.00671 (0.338)	-0.237** (0.102)
$\ln P_{COAL}$	-0.114 (0.180)	-0.0672 (0.198)	0.0547 (0.110)
In Net Load	3.428* (1.794)	2.559* (1.117)	1.857*** (0.346)
Country \times year FE	Y	Y	Y
Calendar Month FE	Y	Y	Y
Day-of-week FE	Y	Y	Y
Observations	13,349	4,622	10,922
R-squared	0.795	0.595	0.831

Standard errors are clustered at the country level

*** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$

Gas-fired Power Generation and CO₂ permit prices

Dependent variable is log generation

VARIABLES	DE	ES	FR	IT	NL	PL	PT
ln P_{CO2}	0.150* (0.0776)	0.272*** (0.105)	0.863*** (0.256)	0.157*** (0.0245)	0.244*** (0.0465)	0.298*** (0.0760)	-0.0935 (0.166)
ln P_{GAS}	-0.506*** (0.0716)	-0.293** (0.125)	-0.205 (0.133)	-0.170*** (0.0250)	-0.426*** (0.0432)	-0.307*** (0.0588)	0.258 (0.157)
ln P_{COAL}	-0.0235 (0.0893)	0.483*** (0.153)	-0.541*** (0.165)	0.150*** (0.0305)	-0.0262 (0.0726)	0.360*** (0.0695)	-0.203 (0.222)
ln Net Load	1.923*** (0.231)	3.378*** (0.278)	4.359*** (0.318)	1.610*** (0.0566)	2.484*** (0.255)	0.514*** (0.196)	2.558*** (0.554)
Observations	1,718	1,109	800	1,716	1,725	1,655	1,082
R-squared	0.535	0.522	0.523	0.930	0.507	0.748	0.330

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Coal-fired Power Generation and CO₂ permit prices

Dependent variable is log generation

VARIABLES	DE	ES	FR	IT	NL	PL	PT
In P_{CO2}	-0.172*** (0.0590)	0.897*** (0.114)	0.383 (1.729)	0.0444 (0.0515)	-0.514*** (0.0481)	0.00389 (0.0299)	0.108 (0.252)
In P_{GAS}	0.551*** (0.0530)	-0.0170 (0.107)	-1.789* (0.977)	0.0316 (0.0475)	0.684*** (0.0519)	0.0417* (0.0252)	0.641** (0.264)
In P_{COAL}	-0.504*** (0.0702)	0.878*** (0.141)	2.416** (0.972)	0.0452 (0.0650)	-0.373*** (0.0642)	0.00463 (0.0351)	-0.966*** (0.299)
In Net Load	1.837*** (0.227)	1.487*** (0.309)	7.085*** (1.672)	0.781*** (0.108)	0.493** (0.206)	1.606*** (0.112)	1.526** (0.632)
Observations	3,436	1,109	527	1,716	1,722	3,346	656
R-squared	0.375	0.856	0.590	0.616	0.666	0.182	0.392

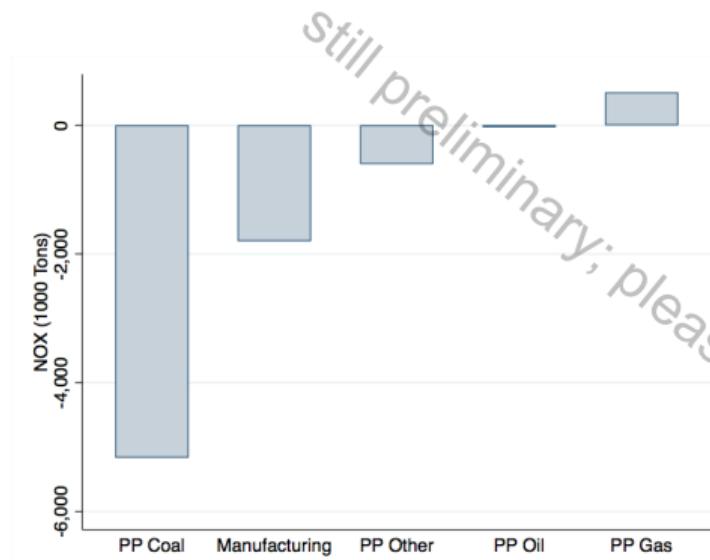
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

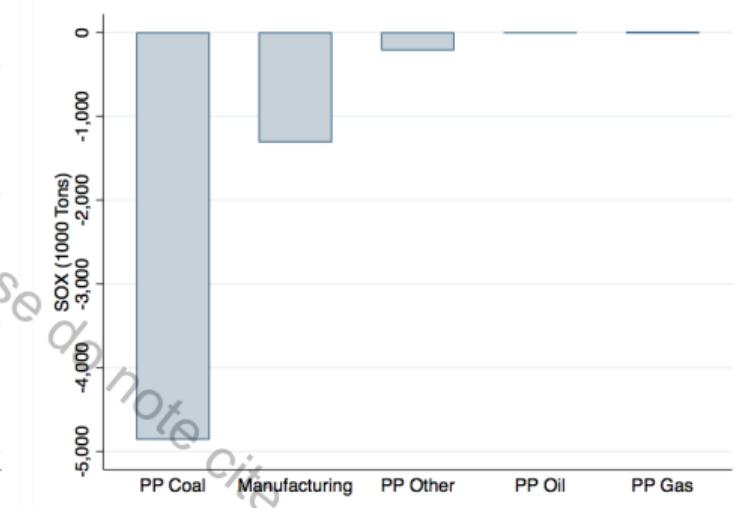
Computing Emissions for a Tightening of the Cap by 15%

Step 1: Assume changes in cap and free allocation:

$$\Delta\Omega = -0.15\Omega_0$$

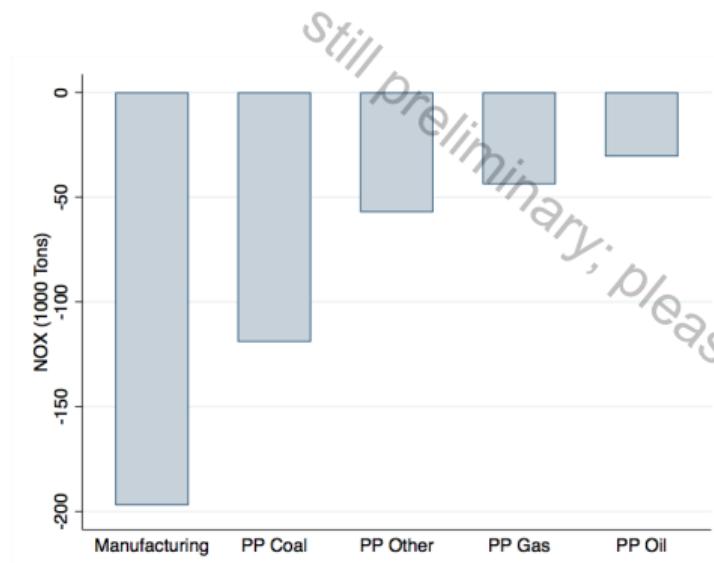

$$\Delta\omega_i = \omega_{i,2015} - \omega_{i,2005}$$

Step 2: Simulate resulting changes in emissions of CO₂ and of co-pollutant *p*

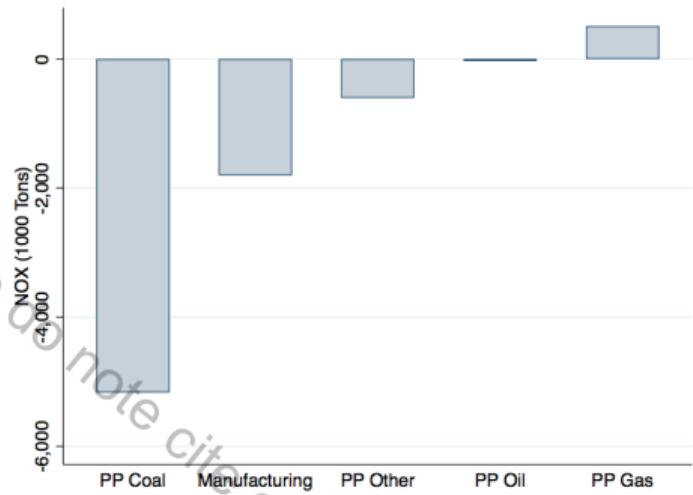

$$\Delta\hat{e}_i = \left(\hat{\beta} + z'_i \hat{\beta}_z \right) \underbrace{\frac{\Delta\Omega}{-1.48} 10^{-7}}_{\Delta P \approx +19.4} + \hat{\beta}_2 \Delta\omega_i$$

$$\Delta\hat{x}_i^p = \Delta\hat{e}_i \cdot \underbrace{\left[\frac{x_{it}^p}{e_{it}} \right]_{p50}}_{\text{median emissions ratio}}$$

Change in Co-pollutant Emissions by Emitter Type (Cap-and-Trade)

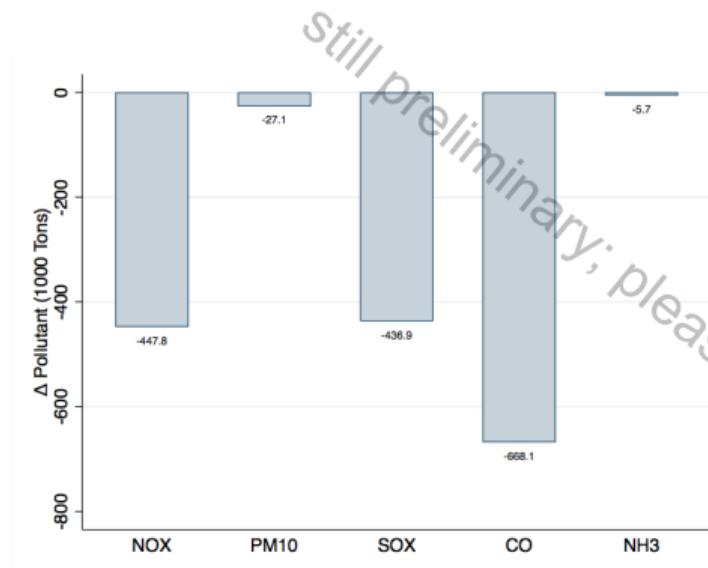


(a) Nitrogen Oxides

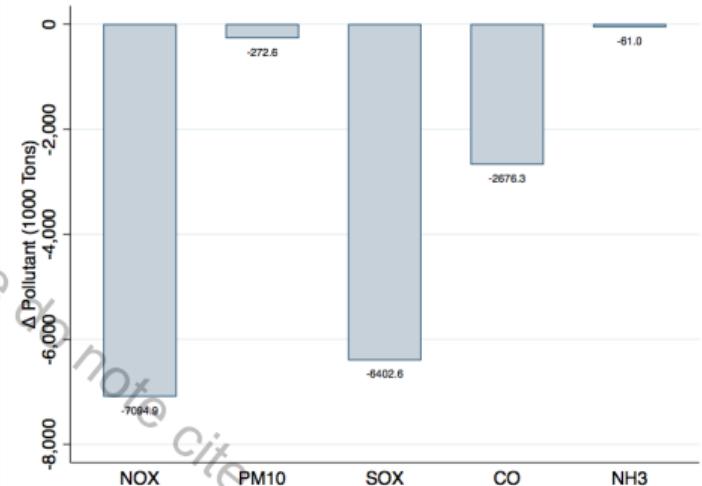


(b) Sulfur Oxides

Change in NO_x Emissions by Emitter Type (Trading vs. Uniform)



(a) Uniform Reduction



(b) Cap-and-Trade

Changes in Emissions of Main Co-pollutants (Trading vs. Uniform)

(a) Uniform Reduction

(b) Cap-and-Trade

Aggregating Pollution Changes to Co-Benefits

still preliminary; please do not cite or quote

Compute co-benefits using pollution-specific environmental cost estimates

Employ pollutant-specific environmental costs

$$\delta^p \left[\frac{\text{€}}{\text{kg}} \right]$$

to sum damages across pollutants:

$$\sum_p x_p \delta^p$$

Price δ^p is the mid-point estimate of health damages resulting from 1 kg of pollutant p being released by the average emitter in the EU-28 countries.
Data from De Bruyn et al. (2018).

Counterfactual Change in Environmental Damages (bn. EUR)

	Δ Damages	
	Unweighted	Pop-Weighted
A. Power Plants	-156.8	-79.0
Natural Gas	7.5	5.5
Oil	-2.1	-3.2
Coal	-150.0	-73.9
Other	-12.3	-7.5
B. Manufacturing	-67.9	-56.8
Total	-224.7	-135.8

Counterfactual Change in Environmental Damages (bn. EUR)

	Δ Damages	
	Unweighted	Pop-Weighted
A. Power Plants	-156.8	-79.0
Natural Gas	7.5	5.5
Oil	-2.1	-3.2
Coal	-150.0	-73.9
Other	-12.3	-7.5
B. Manufacturing	-67.9	-56.8
Total	-224.7	-135.8
vs. uniform 15% reduction	-16.9	-16.1

- ▶ Trading increases co-benefits by factor of more than eight
- ▶ Owing to much stronger abatement at coal-fired power plants and manufacturing

Getting atmospheric pollution dispersion right

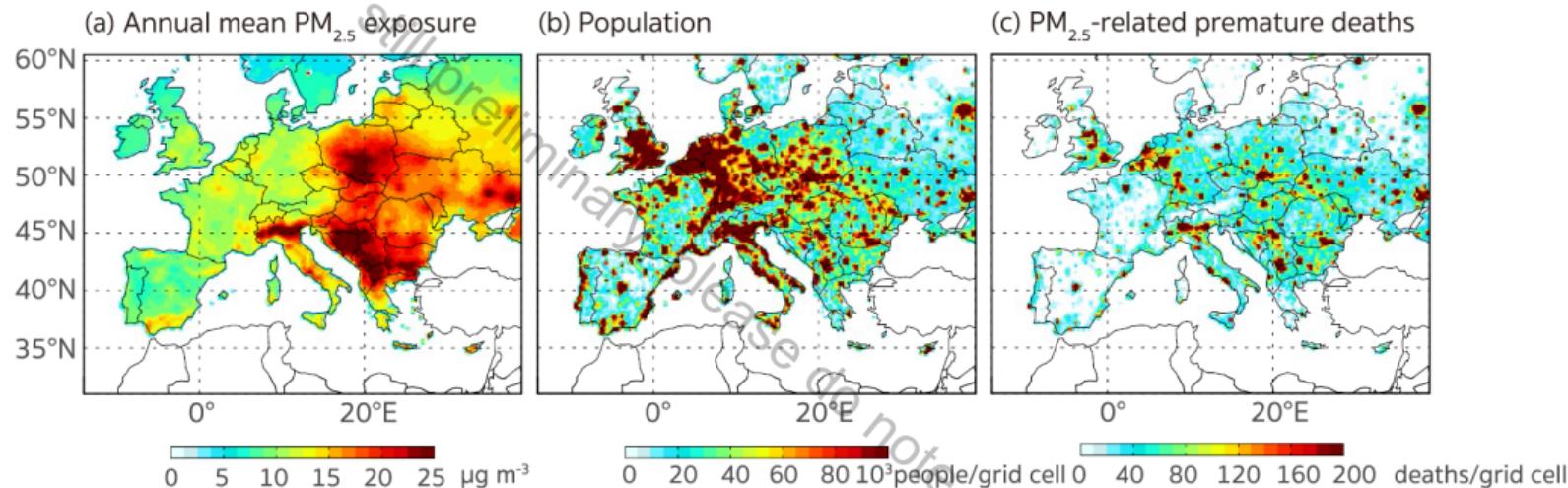
Environmental prices:

- + easy to use
- + broad pollutant coverage
- omit complexity of atmospheric pollution dispersion, which is governed by highly non-linear function of atmospheric chemistry, weather, topography

► We care about atmospheric dispersion because spatial heterogeneity in pollution exposure could strongly affect results

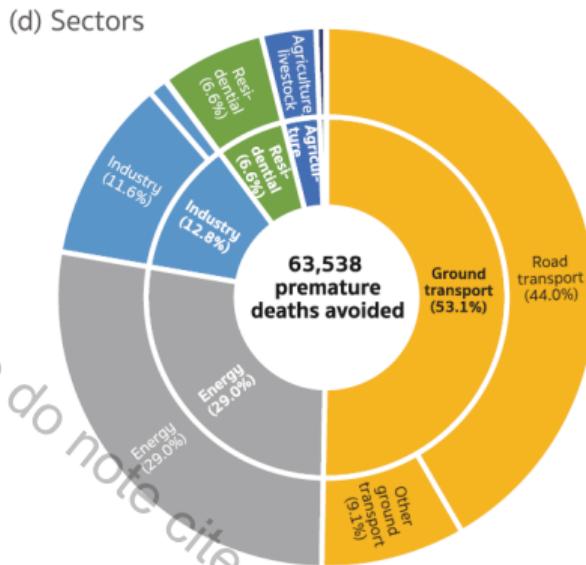
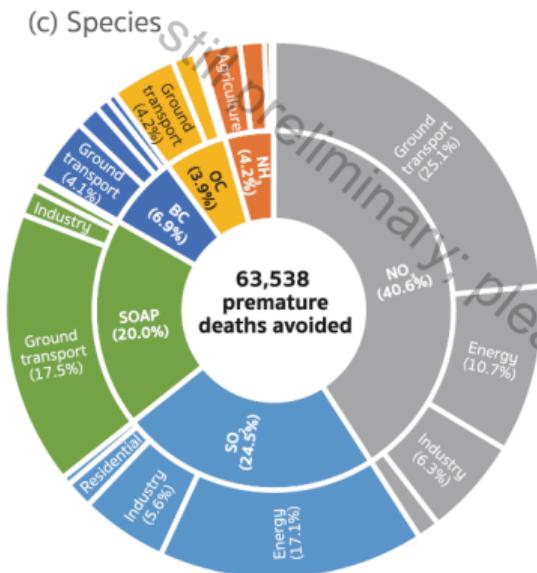
Solution: Combine econometric model with state-of-the-art **Chemical Transport Model**

Results II: Atmospheric Dispersion and Population Exposure


A Nested GEOS-Chem Adjoint model for Europe

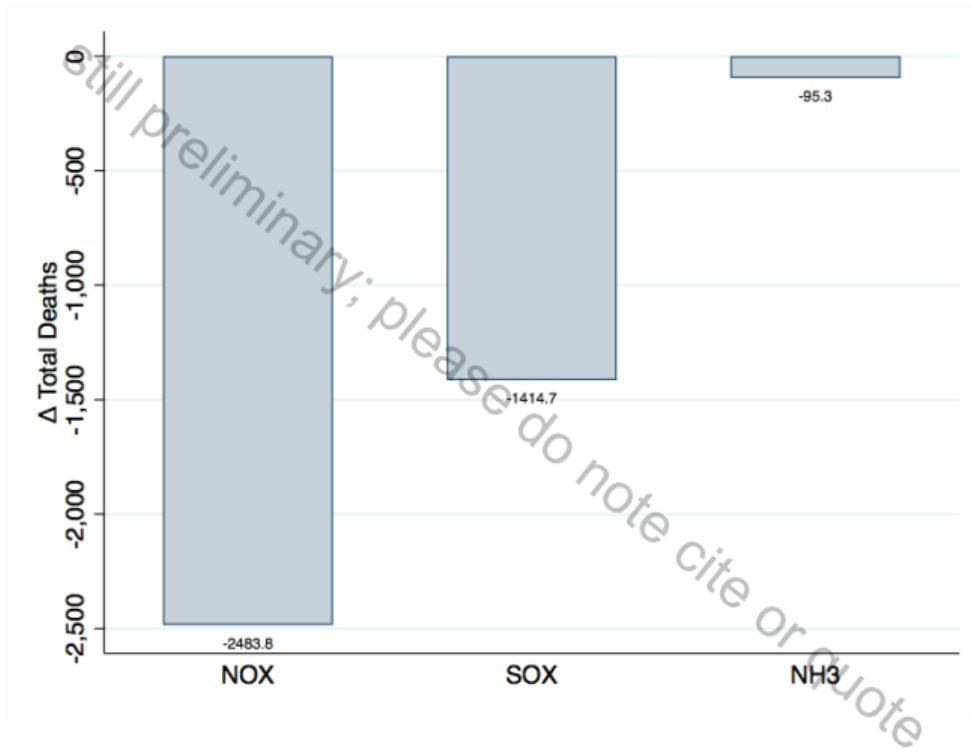
- ▶ Chemical Transport Model built by HEAL-Project team (Gu et al., 2023a,b)
- ▶ Input: Primary pollutants NO_x , SO_2 , NH_3 , (...)
- ▶ Outputs:
 - ▶ Gridded ($0.25^\circ \times 0.3125^\circ$) population exposure to $\text{PM}_{2.5}$, O_3
 - ▶ Source appointment: Sensitivity of exposure to grid-level emissions [more](#)
- ▶ Gu et al. (2023a) combine population exposures with *Global Burden of Disease 2019* (Murray et al., 2020) to estimate pollution-related premature deaths:

$$J_{\text{PM}_{2.5}} = \sum_L \sum_A \sum_{k \in D} \sum_{(I,J) \in k} (POP_{I,J,A} \times MOR_{I,J,A,L} \times AF_{I,J,A,L})$$

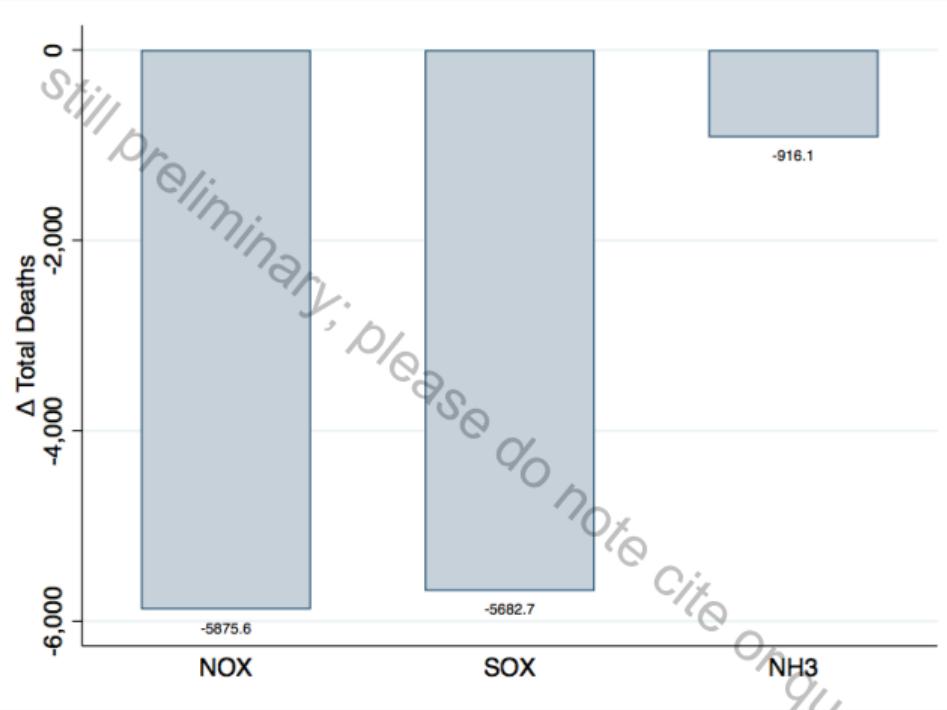


where $AF_{I,J,A,L} = \frac{RR_{I,J,A,L} - 1}{RR_{I,J,A,L}}$ and $L \in \{\text{COPD, IHD, LRI, LC, T2D, stroke}\}$

PM_{2.5} exposure, population, and health burden in Europe

- ▶ 449,813 PM_{2.5}-related premature deaths in 2015 (relative to total pop. 598.97m)
- ▶ 265,328 deaths (59%) due to anthropogenic NO_x, NH₃, SO₂, OC, BC, SOAP


Health Benefits of Reducing Anthropogenic PM_{2.5} Pollution, 2005-2015

Source: Gu et al. (2023a)


- ▶ Energy and Industry account for 26,558 (42%) of avoided deaths
- ▶ What was the contribution of the EU ETS?

Change in PM_{2.5}-related deaths: Uniform emissions reductions

Net change in premature deaths: -3,994.

Change in PM_{2.5}-related deaths: With permit trading

- ▶ Net change in premature deaths: **-12,474**.
- ▶ Trading gives 3x larger reduction in premature deaths than uniform reduction.

Implications of Co-Benefits Estimates for Cost-Benefit Analysis

1. Co-benefits vs. direct benefits

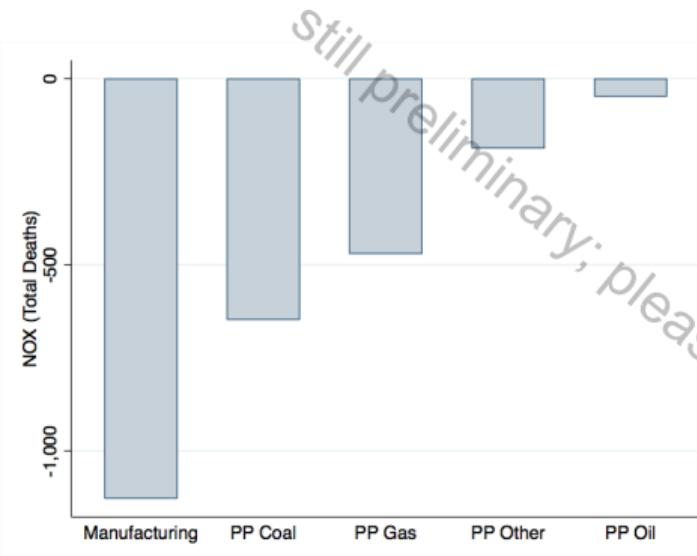
- ▶ Assume **€190/tCO₂** per ton for the social cost of carbon (Rennert *et al*, 2022 *nature*)
- ▶ Assume low VSL of €2.7m: 'Co-pollutant cost of carbon': **€117/tCO₂**

⇒ **PM_{2.5}-related health co-benefits are on par with direct benefits**

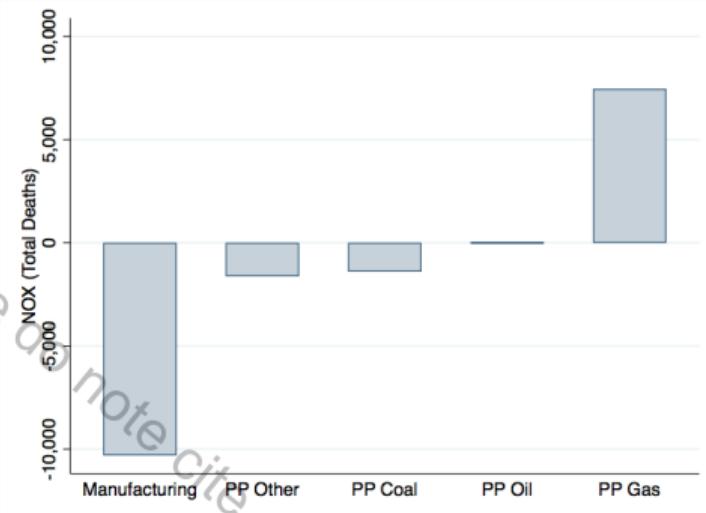
2. Co-benefits vs. abatement costs

- ▶ Marginal abatement costs are bounded from above by the carbon price
- ▶ Upper bound on abatement costs:

$$287\text{ Mt} \cdot \frac{\text{€30}}{\text{t}} = \text{€ 8.6 bn}$$

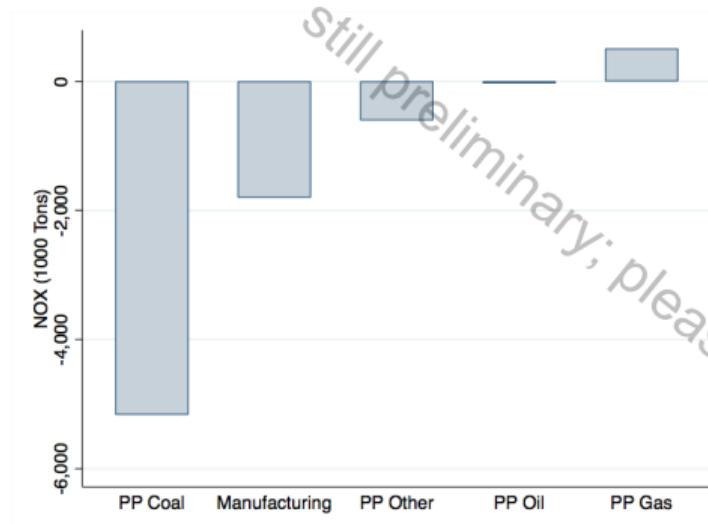

- ▶ private benefit-to-cost ratio

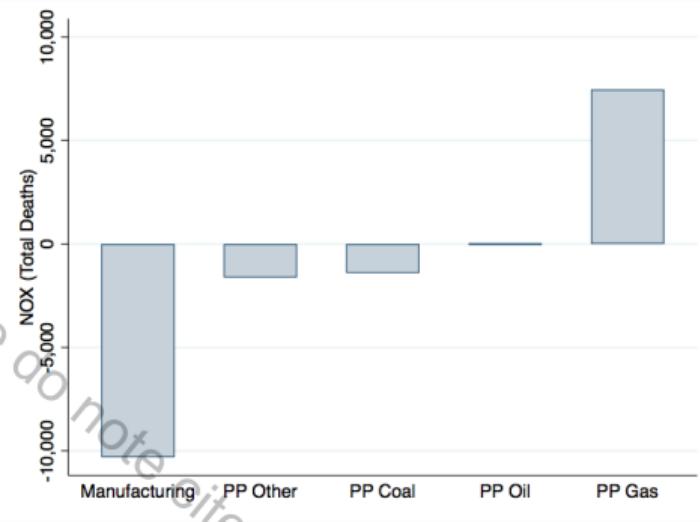
$$\frac{33.6 \cdot 10^9}{8.6 \cdot 10^9} = 3.9$$


⇒ **EU ETS is very cost effective.**

Spotlight I: Distributional Issues: NOx Hotspots change

Changes in PM2.5-related Premature Deaths by NOx Emitter (Trading vs. Uniform)

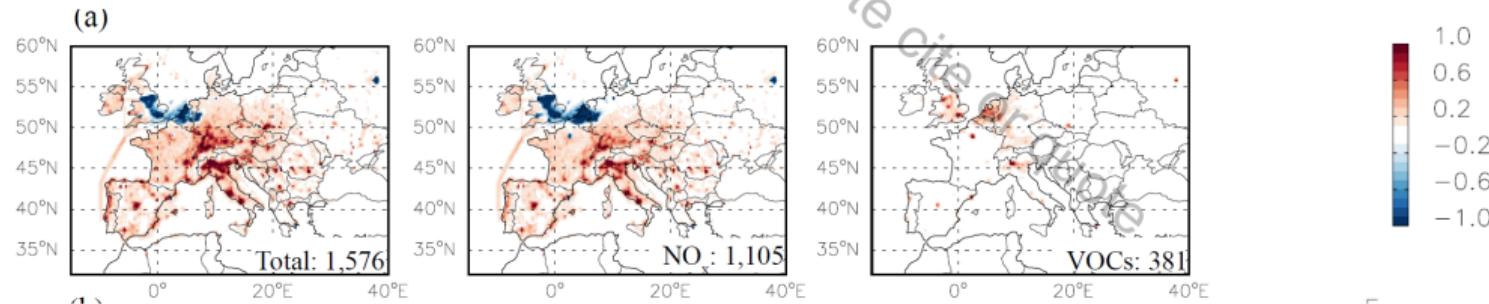

(a) Uniform Reduction


(b) Cap-and-Trade

Analyzing distribution of health co-benefits and co-damages requires CTM forward runs (computationally expensive).

Spotlight II: Why the CTM matters – NO_x emissions vs. damages

(a) NO_x Emissions



(b) Premature Deaths due to NO_x

Accounting for atmospheric chemistry and population exposure changes the ranking of which one is the worst NO_x emitter group.

Spotlight III: Health Burden of NO_x co-emissions beyond $\text{PM}_{2.5}$

- ▶ NO_x is the main precursor to **ozone pollution**, along with CO and volatile organic compounds (VOCs)
- ▶ Calls for assessment of ozone-related health burden.
- ▶ Challenging because of seasonality and non-linearity of ozone formation
- ▶ Could lead to different conclusions because NO_x sensitivity of ozone is negative in NO_x -saturated regions (Gu et al., 2023b):

Conclusions

- ▶ The EU ETS redistributed air pollution in major ways across space
- ▶ Valuation of co-pollution changes implies high (private) benefit-cost ratio of EU ETS
- ▶ PM_{2.5} related Co-benefits on par with direct benefits of CO₂ abatement
- ▶ Combining econometric model with CTM yields sizable mortality reductions
- ▶ Letting polluters trade CO₂ increases co-benefits three-fold relative to uniform reductions.

still preliminary, please do note cite or quote

Thank you
www.heal-project.eu