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1 Introduction

Real-time vintage data are often used to construct forecasts. At central banks, such as the Federal

Reserve and the European Central Bank, this is due to the real-time nature of their forecasting prob-

lem. For example, at each FOMC briefing and General Council meeting, it is expected that the staff

will have taken on board the latest data when constructing their forecasts. This is important not

only because new data are continuously being released but also because previously released macroe-

conomic data are revised and the revised data are generally considered more accurate. Documenting

the importance of real-time data to central bank forecasting was one of the main motivations for the

development of the Real-Time Dataset for Macroeconomists (RTDSM) at the Federal Reserve Bank

of Philadelphia (Croushore and Stark, 2001). In particular, while Stark and Croushore (2002) and

Croushore (2006) emphasize that data revisions obviously change the conditioning information avail-

able to the forecasting agent, the revisions can affect parameter estimates and even the functional

form of the predictive model.

With this in mind, there is an increasing emphasis on evaluating central bank-, survey-, and

model-based forecasts using real-time vintage data. For example, Faust and Wright (2009) evaluate

the efficiency of Greenbook forecasts using a sequence of historical datasets archived at the Board

of Governors. Faust, Rogers, and Wright (2005) investigate prospects for real-time exchange rate

forecasting using vintages of data available at the OECD’s database of Main Economic Indicators.

Chauvet and Piger (2008) illustrate the real-time accuracy of recession forecasts using the ALFRED

database hosted by the Federal Reserve Bank of St. Louis. Croushore (2011) provides a review of other

issues related to real-time forecasting and monetary policy evaluation in the context of the RTDSM.

While much of this empirical literature focuses on the US or the Euro area, Garratt et al. (2011)

investigate real-time forecasting issues associated with data for Australia, New Zealand, and Norway.

Unfortunately, while the empirical forecasting literature has adapted to the real-time nature of

macroeconomic data, the bulk of the theoretical literature on forecast evaluation largely ignores it.

Examples like West (1996), Clark and McCracken (2001), Corradi, Swanson, and Olivetti (2001),

Giacomini and Rossi (2010), and Odendahl, Rossi and Sekhposyan (2022) each ignore the possibility

that at any given forecast origin the most recent data may be subject to revision. This is an issue

because out-of-sample tests of predictive ability are operationally distinct from in-sample tests, in

ways that make out-of-sample tests particularly susceptible to changes in the correlation structure of

the data as the revision process unfolds. This susceptibility has three sources: (i) while parameter

estimates are typically functions of only a small number of observations that remain subject to revision,

out-of-sample statistics are functions of a sequence of parameter estimates (one for each forecast origin
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t = R, . . . , T ), (ii) the predictors used to generate the forecast and (iii) the realization of the dependent

variable used to construct the forecast error may be subject to revision, and hence a sequence of

revisions contribute to the test statistic. If data subject to revision possess a different mean and

covariance structure than final revised data (e.g., Aruoba (2008)), tests of predictive ability using

real-time data may have a different asymptotic distribution than tests constructed using data that are

never revised.

In the context of OLS-estimated linear models, Clark and McCracken (2009) show that real-time

data can affect tests of predictive ability. In particular, they rederive the results in West (1996) but

allow for forecasts that are constructed sequentially across vintages of real-time data. They find that

data revisions can lead to substantial changes in asymptotic variances for asymptotically normal tests.

In addition, they find that in the context of nested model comparisons, tests can be asymptotically

normal even when they were not in the absence of revisions. Subsequently, the analytical results

indicate that ignoring the real-time nature of the data can lead to large size distortions and substantial

reductions in power. These distortions can arise when revisions are best categorized as news, in the

sense of Mankiw, Runkle, and Shapiro (1984), but are most likely to occur when the revisions contain

at least some element of noise which, in turn, causes forecast errors to be correlated with predictors.

The main contribution of this paper is to provide a bootstrap approach to conducting inference

in the same framework as Clark and McCracken (2009). When appropriately implemented, the boot-

strap allows for valid out-of-sample inference without having to estimate the somewhat complicated

asymptotic variances derived by Clark and McCracken (2009). More specifically, we provide analyt-

ical, Monte Carlo and empirical evidence on the effectiveness of a new block bootstrap approach to

out-of-sample inference when forecasts are constructed using real-time vintage data. In many ways

our bootstrap is unique. There exists no other bootstrap specifically designed for vintage data. Our

block bootstrap treats those observations near the end of a given vintage of data as fundamentally

distinct from older, fully revised observations. By doing so, we are able to mimic the triangular array

structure of real-time data in each bootstrap sample.

While our bootstrap is new, it clearly builds on previous work, including Calhoun (2015) who

develops a bootstrap that can be used for conducting inference on asymptotically normal out-of-

sample tests of predictive ability. The procedure allows for estimation error to contribute to the

asymptotic distribution as derived in West (1996) but only in the same environment as West - one

that does not allow for real-time vintages of data. It is also related to that of Corradi and Swanson

(2007) who propose a block bootstrap procedure for predictive inference based on recursive estimation

schemes. Like they do, we must account for the fact that as we move across forecast origins the sample
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size increases and hence some observations are used more frequently than others, and this affects the

design of the bootstrap statistic (in particular, it requires a careful choice of the centering constant).

Monte Carlo simulations indicate that our bootstrap can provide accurately sized tests of predic-

tive ability in the presence of revisions. Even so, the bootstrap algorithm has limitations and the

assumptions underlying its validity are obvious approximations to reality. Specifically, we assume that

revisions are finite lived and regular across all vintages. A few series, like non-seasonally adjusted

initial and continuing claims, as well as housing starts, experience revisions that align with our as-

sumptions. However, for many other macroeconomic variables like employment, consumption, and

industrial production, our assumptions only partially hold in the sense that for most vintages, only a

small handful of the most recent observations are revised. That said, these series also have a once-

a-year annual benchmark revision in which many more historical observations are revised.1 As such,

the revision process is not regular across all vintages. Regardless, by abstracting from benchmark

revisions we are able to take one step toward developing a bootstrap approach to inference when data

revisions are present. Later we use simulations to assess the impact of this simplifying assumption on

our bootstrap algorithm and its ability to provide accurately sized and powerful tests.

We then apply our bootstrap in the context of comparing the forecast accuracy of models used to

forecast CPI- and PCE-based inflation. Specifically, we revisit a small subset of the results in Ang

et al. (2007) in which they conclude that survey-based forecasts are more accurate than a variety of

model-based forecasts. Our goal is to see if their conclusions are robust to the presence of real-time

data, which they do not consider. Our results largely align with their conclusion, with the exception

that the models seem to out-perform the surveys when forecasting PCE-based inflation at longer

horizons. Even so it’s worth noting that due to data availability, our sample is distinct from theirs.

Before proceeding we need to clarify that our bootstrap is designed for inference when forecasts are

constructed using a common, but very specific application of vintage data. We assume that at a given

forecast origin, the current vintage of the observables is exclusively used to form the forecast. This

implies that the parameter estimates are estimated using some data that have just been released, some

that have been revised once (or more), and some that have been fully revised. Alternative approaches

exist. Koenig, Dolmas, and Piger (2003) and Clements and Galvão (2013) estimate models using

historical observations with a common level of revision. For example, one might estimate model

parameters using only initial releases of a series. This entails using one observation each from the

current and previous vintages – in contrast to our approach which uses many values from a single

1Consider US payroll employment. In every month other than June, there is a new initial release for the current
month and the values from the previous two months are revised. In June, that same pattern is augmented by revisions
to the previous five years worth of data. Hence, for 11 months of the year our assumptions are satisfied but in general
they are not due to the annual benchmark revision.
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vintage. For a discussion on the costs and benefits of these two approaches, see Clements and Galvão

(2019).

The remainder of the paper proceeds as follows. Section 2 introduces the notation and describes

the forecasting environment. Section 3 presents the assumptions. Section 4 delineates the asymptotic

distribution of the proposed test statistic. Section 5 describes the bootstrap algorithms and charac-

terizes the asymptotic properties of our bootstrap approach to inference. Section 6 presents Monte

Carlo evidence on the finite sample size and power of the test using both asymptotic critical values

as well as bootstrap critical values. Section 7 illustrates our bootstrap approach to inference in the

context of real-time inflation forecasting. Section 8 concludes. An Appendix contains proofs of the

theoretical results.

2 Framework

We follow the revision structure described in Clark and McCracken (2009). At each forecast origin

t = R, . . . , T , forecasts of a scalar target variable y are made using a finite dimensioned vector of

predictors x based on the current vintage of data {ys (t) , xs (t) : s = 1, . . . , t}. We assume that after

a finite number of r releases the revisions are final. For example, we let ys|j denote the jth release of

ys, and hence ys|1, . . . , ys|r−1 are all preliminary values of ys while ys|r corresponds to the final value

of ys, which we write as ys|r = ys. For each t,

ys (t) =

{
ys for 1 ≤ s ≤ t− r + 1
ys|j for s = t− j + 1, j = r − 1, . . . , 1.

To illustrate the notation, consider the case of a single revision with r = 2. Table 1 provides a

description of this data structure. It shows that the data has a triangular structure, where the last

observation in each column (vintage) is updated in the following vintage. Note that, as a practical

matter, there are two reasons that the first R − 1 observations are assumed to be fully revised. First

we assume that r is finite, and second, our asymptotics involve taking limits with respect to both the

initial R observations and P forecast origins. Any revisions that occur in the first r− 1 vintages that

affect the first R − 1 observations will be asymptotically irrelevant and hence for clarity we abstract

from their presence.

The τ -step ahead forecast is formed using linear OLS estimated models x′t(t)β̂(t) where

β̂ (t) ≡
(

t∑
s=1+τ

xs−τ (t)x
′
s−τ (t)

)−1 t∑
s=1+τ

xs−τ (t) ys (t) ,

and the bracket notation in β̂ (t) is used to emphasize dependence on vintage t data. The forecasts are

evaluated against yt+τ |r′ , the r′th release of the target variable yt+τ , where r
′ ∈ {1, . . . , r}. For instance,
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Table 1: Structure of real-time data with r = 2

Vintage date (t)
Obs. s R R+ 1 . . . T + 1

1 y1 y1 y1
2 y2 y2 y2
...

...
...

...

R− 2 yR−2

R− 1 yR−1 yR−1 yR−1

R yR|1 yR yR

R+ 1 yR+1|1
...

...

T yT
T + 1 yT+1|1

if τ = 1 and r′ = 1, the forecast is evaluated against the first release of yt+1, yt+1|1 = yt+1 (t+ 1).

But if r′ = 2, the forecast is evaluated against yt+1|2 = yt+1 (t+ 2), the second release of yt+1 where

yt+1(t+ 2) = yt+1 if r = 2.

Given a sequence of real-time forecasts, one is interested in testing the scalar null hypothesis

H0 : Ef
(
yt+τ |r′ , xt (t) , β0

)
= 0,

for a known function f(.), which we will often simplify as ft+τ |r′ = f
(
yt+τ |r′ , xt (t) , β0

)
, and for a

given realization horizon r′ for the target variable. Looking ahead toward our bootstrap, this implies

that ft+τ |r′ depends on data from two different vintages: the vintage containing yt+τ |r′ and the vintage

containing xt (t).

As a simple example, for a test of zero-mean prediction error Eut+τ |r′ = 0, we have ft+τ |r′ =

ut+τ |r′ = yt+τ |r′ − x′t (t)β0. A more complex example is a test of equal predictive ability between two

models. For example, let x′i,t(t)β̂i(t), i = 1, 2, denote forecasts that we evaluate under quadratic loss.

In this case, the null is E(u21,t+τ |r′ − u22,t+τ |r′) = 0 and the subsequent function is

ft+τ |r′ =
(
yt+τ |r′ − x′1,t (t)β1,0

)2 − (
yt+τ |r′ − x′2,t (t)β2,0

)2
,

where we have now defined β0 = (β′
1,0, β

′
2,0)

′ and xt(t) = (x′1,t(t), x′2,t(t))′ to account for the contribu-

tions to ft+τ |r′ from both models.

To test the null hypothesis we form a test statistic based on the finite sample analogue of ft+τ |r′ ,

where β0 is replaced by β̂ (t):

ŜP = P−1/2
T∑

t=R

f
(
yt+τ |r′ , xt(t), β̂(t)

)
,
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where P = T −R+1. This notation implies that we have a total of P + τ + r′ − 1 vintages. The first

P vintages are used to produce τ -step-ahead forecasts while P − τ − r′ of these vintages are also used

to evaluate the forecasts. The final τ + r′ − 1 vintages are used only for forecast evaluation.

In the context of tests of equal predictive ability between two OLS estimated linear models, Clark

and McCracken (2009) show that ŜP can be asymptotically normal with an asymptotic variance remi-

niscent of that developed in West (1996). Their method of proof, which we will follow, takes advantage

of the assumption that the revision process is finite lived. This is a useful approximation because it

implies that under additional mixing and moment conditions, β̂(t) is asymptotically equivalent to the

estimator that uses fully revised data only,

β̂t ≡
( t∑

s=1+τ

xs−τx
′
s−τ

)−1
t∑

s=1+τ

xs−τys.

Absent this assumption, we would have to consider the possibility that the probability limit of β̂(t),

β0 = (E(xs−τx
′
s−τ ))

−1E(xs−τys), would vary across forecast origins t due to the revision process

itself rather than some underlying changes in the data-generating process for the fully revised data.

With this in mind, in the following two sections we first extend the results in Clark and McCracken

(2009),which only considered tests of equal predictive ability between two models under quadratic

loss, to a wider range of functions ft+τ |r′ . We then delineate our bootstrap algorithm and show how

it allows us to replicate the null asymptotic distribution of ŜP and thus be able to conduct inference

using a percentile bootstrap and avoid the need to estimate the somewhat complicated asymptotic

variances.

3 Assumptions

In this section, we introduce the assumptions that allow us to obtain the asymptotic distribution of

ŜP . Throughout we let ft+τ |r′,β ≡ ∂
∂β′ f

(
yt+τ |r′ , xt (t) , β0

)
and define F ≡ Eft+τ |r′,β . Our assumptions

are comparable to those in Clark and McCracken (2009), which adapt the results in West (1996) to

environments where revisions are present.

Assumption 1 In an open neighborhood N around β0 and with probability 1, (a) ft+τ |r′ (β) is mea-

surable and twice continuously differentiable. (b) There exists a constant D < ∞ such that for all t,

supβ∈N

∣∣∣∣∂2ft+τ |r′ (β)
∂β∂β′

∣∣∣∣ < mt+τ with a measurable function mt+τ such that E (mt+τ ) < D.

Assumption 1 ensures that the function ft+τ |r′ is well approximated by a quadratic function in

the neighborhood of β0. Without data revisions, it corresponds to Assumption 1 in West (1996). As

West (1996) remarks, this assumption is automatically satisfied if the function is a squared forecast
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error and the model is linear, provided second moments of the target variable yt+τ |r′ and predictors

xt (t) exist. Regardless, the assumptions are general enough to permit a wider range of functions –

and loss functions in the context of tests of equal predictive ability – so long as they are sufficiently

well behaved in a neighborhood of β0.

Assumption 2 For each model i = 1, . . . , k, where k is finite, the following holds. (a) The final-data

estimate β̂i,t satisfies β̂i,t − βi,0 = Bi(t)Hi(t), where

Bi(t) =

(
t−1

t∑
s=1+τ

xi,s−τx
′
i,s−τ

)−1

a.s.−−→ Bi, and Hi(t) = t−1
t∑

s=1+τ

hi,s with E(hi,s) = 0,

where Bi =
(
E(xi,sx

′
i,s)

)−1
and hi,s = xi,s−τ (ys − x′i,s−τβi,0). (b) The real-time data estimate β̂i(t)

satisfies β̂i(t)− βi,0 = B̂i(t)Ĥi (t), where

B̂i(t) =

(
t−1

t∑
s=1+τ

xi,s−τ (t)xi,s−τ (t)
′
)−1

and Ĥi(t) = t−1
t∑

s=1+τ

hi,s(t),

with hi,s(t) = xi,s−τ (t)(ys(t)− xi,s−τ (t)
′βi,0).

The first part of Assumption 2 is a special case of Assumption 2 in West (1996), wherein multiple

estimated models are allowed, but with the restriction that those parameters are estimated by OLS

using fully revised data. The second part of Assumption 2 defines the real-time estimator β̂ (t) as an

OLS estimator based on vintage t data. Clark and McCracken (2009) rely on a similar assumption

(see in particular their Assumption A1). Note that we focus exclusively on the recursive scheme when

estimating model parameters. As we discuss later in the context of the bootstrap algorithm, the choice

of centering constant depends explicitly on this restriction.

While our results allow for multiple models, as would be the case in a test of equal forecast accuracy,

it is convenient to consolidate notation to a single parameter vector β0 = (β′
1,0, . . . , β

′
k,0)

′ and let

xt = (x′1,t, . . . , x′k,t)
′. Having done so we define β̂t so that β̂t−β0 = B(t)H(t) where B(t) = diag(Bi(t)),

B = diag(Bi), H(t) = (H ′
1(t), . . . , H

′
k(t))

′, and hs = (h′1,s, . . . , h′k,s)
′. The corresponding notation for

β̂(t) is analogous so that β̂(t)− β0 = B̂(t)Ĥ(t).

Our next assumption is a moment and dependence assumption on the vector

gt+τ |r′ ≡
( (

ft+τ |r′ − Eft+τ |r′
) (

ft+τ |r′,β − F
)

h′t+τ x′t − Ex′t
)′
.

Assumption 3 (a) For some d > 1 and δ > 0, suptE
∥∥gt+τ |r′

∥∥4d+δ
< ∞ where ||.|| denotes the

Euclidean norm. (b) gt+τ |r′ is covariance stationary. (c) {gt+τ |r′} is strong mixing with mixing co-

efficients of size −3d
d−1 . (d) Ω is positive, where Ω ≡ limP,R→∞ V ar(P−1/2

∑T
t=R

(
ft+τ |r′ − Eft+τ |r′

)
+

FBP−1/2
∑T

t=R H(t)).
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Assumption 3 modifies Assumption 3 in West (1996) to the context of real-time data. In addition,

we strengthen the moment bound by an additional δ > 0, which we use when proving our bootstrap

results. This type of strengthening is common in the bootstrap literature, see e.g., Fitzenberger (The-

orem 3.1, 1998). Similarly to Clark and McCracken (2009) (see their Assumption A2), we impose a

mixing-type condition on the vector gt+τ |r′ which depends on the vintage horizon r′ through the func-

tion ft+τ |r′ and its derivatives. We also require that Ω is positive as in Assumption A2 (f) of Clark and

McCracken (2009). For many applications, like pairwise tests of equal accuracy between non-nested

models, this restriction seems unnecessary. However, in the context of nested model comparisons, it is

straightforward to show that whether Ω is positive depends on the properties of the revision process

– a point we return to later.

Assumption 4 For some d > 1, r < ∞ and j = 1, . . . , r, (yt|j , x′t|j)
′ is uniformly L4d-bounded.

Assumption 4 is the same as Assumption A2(d) of Clark and McCracken (2009). It puts restrictions

on the revision process. More specifically, it restricts the total number of releases to be a finite

number r. It also requires the released data to have finite moments of order slightly larger than 4.2

This implicitly restricts the stochastic order of magnitude of the revisions. As noted in the previous

section, we rely on this assumption since it implies that β̂t and β̂ (t) are asymptotically equivalent.

Assumption 5 R,P → ∞ and limP,R→∞ P
R ≡ π, where 0 ≤ π < ∞.

Assumption 5 is the same as Assumptions A4 and A4′ of Clark and McCracken (2009).

4 Asymptotic results

In this section we establish the asymptotic distribution of ŜP . To do so, we first show that ŜP is

asymptotically equivalent to

S̃P = P−1/2
T∑

t=R

f
(
yt+τ |r′ , xt(t), β̂t

)
,

a test statistic based on β̂t rather than β̂(t). Specifically, we prove the following result.

Lemma 4.1 Under Assumptions 1-5, ŜP = S̃P + op (1).

By eq. (4.1) of West (1996), adapted to the presence of vintage data, we can expand S̃P −
P 1/2E(ft+τ |r′) as

S̃P−P 1/2E(ft+τ |r′) = P−1/2
T∑

t=R

(ft+τ |r′−E(ft+τ |r′))+FBP−1/2
T∑

t=R

H(t)+op (1) ≡ S1P+FBS2P+op (1) .

2Here and in what follows, we say that Xt is Lp-bounded if (E|Xt|p)1/p < ∞.
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The first term S1P is equal to the scaled average of the demeaned real-time function ft+τ |r′ evaluated

at β0. This piece is asymptotically normally distributed by a central limit theorem (CLT) for strong

mixing data, given our assumptions. The second term depends on S2P , the scaled average of H (t),

the average of the scores hs used in estimating β0 based on the fully revised data. This piece captures

the contribution of the parameter estimation uncertainty and can also be shown to be asymptotically

normal, jointly with S1P .

More specifically, following West (1996), S1P and S2P are jointly asymptotically normal, implying

that

S̃P − P 1/2E(ft+τ |r′)
d−→ N (0,Ω) ,

where

Ω = Ω1 + FBΩ2B
′F ′ +Ω12B

′F ′ + FBΩ′
12, (1)

with

Ω1 ≡ lim
R,P→∞

V ar (S1P ) , Ω2 ≡ lim
R,P→∞

V ar (S2P ) , and Ω12 ≡ lim
R,P→∞

Cov(S1P , S2P ).

The form of Ω is notationally the same as the one obtained in West (1996) without data revisions.

One main difference is that Ω1 is now the long-run variance of the scaled average of the real-time

function ft+τ |r′ rather than the long-run variance of ft+τ ≡ f (yt+τ , xt, β0), the function associated

with fully revised data. Under Assumption 4, the parameter estimation uncertainty as measured by

Ω2 is the same as when all data used in estimation are final. However, its contribution to the overall

covariance matrix Ω is different with data revisions. This is because F ≡ E
(
ft+τ |r′,β

)
is not necessarily

equal to E (ft+τ ,β) ≡ E
(
∂f (yt+τ , xt, β0) /∂β

′).
The form of Ω shows that the covariance between S1P and S2P need not be asymptotically zero.

While perhaps not immediately obvious, this has ramifications for how we design the bootstrap. In

particular we take advantage of the fact that S2P can be decomposed into the sum of two asymptotically

uncorrelated terms, one of which is not correlated with S1P . Borrowing from page 1081 of West (1996),

we write S2P as

S2P ≡ P−1/2
T∑

t=R

H(t) = P−1/2
R∑

s=1+τ

aR,0hs + P−1/2
P−1∑
i=1

aR,ihR+i ≡ S2P.1 + S2P.2,

where the weights aR,i are defined as aR,i ≡ 1
R+i + . . .+ 1

R+P−1 for 0 ≤ i ≤ P − 1.

Lemma 4.2 Under Assumptions 1-5,
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(a) Ω2 ≡ limR,P→∞ V ar (S2P ) = Ω2.1 +Ω2.2, where

Ω2.1 ≡ lim
R,P→∞

V ar (S2P.1) = lim
R,P→∞

V ar(P−1/2
R∑

s=1

aR,0hs),

Ω2.2 ≡ lim
R,P→∞

V ar (S2P.2) = lim
R,P→∞

V ar(P−1/2
P−1∑
i=1

aR,ihR+i).

(b) Ω12 ≡ limR,P→∞Cov (S1P , S2P ) is equal to

Ω12 = lim
R,P→∞

Cov (S1P , S2P.2) = lim
R,P→∞

Cov

(
P−1/2

T∑
t=R

ft+τ |r′ , P−1/2
P−1∑
s=1

aR,shR+s

)
.

Lemma 4.2 (a) shows that S2P.1 is asymptotically uncorrelated with S2P.2. Thus, the asymptotic

variance of S2P is the sum of the asymptotic variances of S2P.1 and S2P.2. Lemma 4.2 (b) shows that

the asymptotic covariance between S1P and S2P.1 is zero. This implies that the covariance between

S1P and S2P depends only on the covariance between S1P and S2P.2. As noted above, this proves

useful when developing our bootstrap method in the next section.

5 Bootstrap results

Here we present a novel bootstrap algorithm and prove its first-order asymptotic validity when used

for out-of-sample inference with real-time data. To develop intuition, we first describe our bootstrap

algorithm for out-of-sample evaluation of one-step-ahead forecasts based on a simple location model

where the data are subject to one single revision. We then extend these results to forecast evaluation

based on general linear models with forecast horizons possibly larger than one and multiple (but finite)

revisions.

5.1 A simple location model

Consider first the following location model:

yt = β0 + ut, t = 1, 2, . . . ,

where yt is the fully revised observation. With r = 2 releases and one revision, we have

ys (t) =

{
ys 1 ≤ s ≤ t− 1
yt|1 s = t,

where yt|1 denotes the preliminary (or first release) of the value of yt according to vintage t. This data

structure is the one described in Table 1.
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At each forecast origin t = R,R+1, . . . , T , we forecast yt+1 (t+ 1) = yt+1|1, next period’s value of

the first release of yt+1. Hence, τ = r′ = 1. The point forecast is β̂ (t) = t−1
∑t

s=1 ys (t) and the null

hypothesis is

H0 : E
(
ft+1|1

)
= 0,

where ft+1|1 ≡ f
(
yt+1|1, β0

)
. In this example, ft+1|1 depends only on the first-released observations

yt+1|1. The test statistics ŜP and S̃P are

ŜP = P−1/2
T∑

t=R

f
(
yt+1|1, β̂ (t)

)
, and S̃P = P−1/2

T∑
t=R

f
(
yt+1|1, β̂t

)
,

where β̂t = t−1
∑t

s=1 ys is the estimate of β0 based on the fully revised data.

When specialized to this example, the asymptotic expansion of S̃P is

S̃P − P 1/2E(ft+1|1) = S1P + FS2P + op (1) , (2)

where F ≡ E
(
ft+1|1,β

)
= E( ∂

∂β f
(
yt+1|1, β0

)
),

S1P = P−1/2
T∑

t=R

(ft+1|1 − Eft+1|1), and

S2P = P−1/2
T∑

t=R

H (t) = P−1/2
R∑

s=1

aR,0hs + P−1/2
P−1∑
i=1

aR,ihR+i ≡ S2P.1 + S2P.2,

where hs = ys−β0 and the weights aR,i are as defined previously. In this simple example, S1P depends

on
{
yt+1|1 : t = R, . . . , T

}
whereas S2P depends on {hs = ys − β0 : s = 1, . . . , T}.

Let S̃∗
P denote a bootstrap version of the original test statistic (we provide more details below).

The decision rule is to reject H0 at level α if |S̃P | ≥ c∗1−α, where c∗1−α is the 100(1 − α)th percentile

of the bootstrap distribution of |S̃∗
P |. To be valid, S̃∗

P needs to replicate the asymptotic expansion

of S̃P . In particular, the bootstrap statistic needs to replicate the (zero) asymptotic mean and the

asymptotic variance Ω of S̃P .

Next, we propose a bootstrap algorithm that accomplishes this goal. Our algorithm relies on

an application of the moving blocks bootstrap (MBB) of Künsch (1989) and Liu and Singh (1992),

adapted to the out-of-sample forecasting context under data revisions. We write γs ∼ MBB from

{1, . . . , R} to denote a random index that is generated from the set {1, . . . , R} using the MBB. Simi-

larly, we write ηs ∼ MBB from {R+ 1, . . . , T + 1} to indicate that ηs is obtained by the MBB on the

set {R+ 1, . . . , T + 1}. We describe below precisely how to generate these indices using the MBB.
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Bootstrap algorithm for a location model

1. For s = 1, . . . , R, let γs ∼ MBB from {1, . . . , R}. For s = R + 1, . . . , T, T + 1 generate ηs ∼
MBB from {R+ 1, . . . , T + 1}, independently of {γs}.

2. For each t = R,R+ 1, . . . , T , compute

β̂
∗
t = t−1

t∑
s=1

y∗s ,

where

y∗s =

{
yγs

if s = 1, . . . , R,
yηs if s = R+ 1, . . . , T + 1.

3. For each t = R,R+ 1, . . . , T, let

y∗t+1|1 ≡ y∗t+1 (t+ 1) = yηt+1|1.

and set

f∗
t+1|1

(
β̂
∗
t

)
≡ f

(
y∗t+1|1, β̂

∗
t

)
= f

(
yηt+1|1, β̂

∗
t

)
.

4. Compute

S̃∗
P ≡ P−1/2

T∑
t=R

(
f∗
t+1|1

(
β̂
∗
t

)
− ft+1|1

(
β̄t

))
,

where

β̄t ≡ E∗
(
β̂
∗
t

)
=

R

t
β̂R +

t−R

t
β̂P ,

with β̂R ≡ R−1
∑R

t=1 yt and β̂P ≡ P−1
∑T

t=R yt+1.

Step 1 is used to obtain the bootstrap analogs of the vintages. More specifically, we generate

two sets of random indices: {γs : s = 1, . . . , R} is used to build the first R bootstrap observations{
y∗s = yγs

: s = 1, . . . , R
}
and {ηs : s = R+ 1, . . . , T + 1} is used to build the remaining T −R+1 = P

observations. Since the data are assumed weakly dependent, we rely on the MBB to generate {γs} and

{ηs}. (These two sets are generated independently. We will explain below why this is not a problem

for the validity of the bootstrap statistic.) More specifically, for a block size equal to l, and assuming

that3 R = k1l, we generate

I1, . . . , Ik1 ∼ i.i.d. Uniform on {1, . . . , R− l + 1}.
3When R is not divisible by l, we let k1 = [R/l], the smallest integer that is greater or equal to R/l. We then obtain

R∗ = k1l bootstrap observations. When R∗ ≥ R , we discard the observations in the last block so as to make the number
of bootstrap observations equal to R.
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These k1 random variables indicate the beginning of each block. Then, for each i = 1, . . . , k1 and

j = 1, . . . , l, we set

γ1+(i−1)l+(j−1) = Ii + (j − 1),

from which we obtain

{γs : s = 1, . . . , R} = {γ1+(i−1)l+(j−1) : i = 1, . . . , k1; j = 1, . . . , l}.

Similarly, we generate ηs from the set {R+ 1, . . . , T + 1} using a MBB based on the same4 block

size l. These random indices are used to obtain the remaining P observations. In particular, letting

P ≡ T −R+ 1 = k2l, we generate k2 uniform draws:

J1, . . . , Jk2 ∼ i.i.d Uniform on {R+ 1, . . . , T + 1− l + 1}.

For each i = 1, . . . , k2 and j = 1, . . . , l, we set

ηR+1+(i−1)l+(j−1) = Ji + (j − 1),

from which we get {ηs : s = R+ 1, . . . , T + 1} = {ηR+1+(i−1)l+(j−1) : i = 1, . . . , k2; j = 1, . . . , l}.
Table 2 provides a description of the bootstrap data structure. This table is the bootstrap analog

of Table 1. In this table, for each vintage column t in R+ 1, . . . , T + 1, we set

y∗s (t) =

⎧⎨
⎩

yγs
1 ≤ s ≤ R

yηs R+ 1 ≤ s < t
yηs|1 s = t.

We see that except for the first column (vintage R), which sets all the observations in the bootstrap

vintage R as final, all the remaining (vintages) columns replicate the triangular structure of the data.5

Note that the bootstrap observations indexed by ηs for s = R + 1, . . . , T + 1 are used both in

estimating β0 (for vintagesR+1 and beyond) as well as in evaluating the forecast. For this reason, these

observations can be preliminary or final. This is the main reason we introduce a new random index

ηs (generated independently of γs), which is randomly drawn from {R+ 1, . . . , T + 1}. Restricting

the support of ηs to {R+ 1, . . . , T + 1} ensures that both ys and ys|1 are available, implying that we

can obtain their bootstrap analogs. If instead we had generated a single index ηs from the entire set

{1, . . . , R,R+ 1, . . . , T + 1} (as in the bootstrap schemes of Corradi and Swanson (2007) and Calhoun

(2015)), we would not be able to guarantee that a preliminary value is available for all observations.

4Assuming the same block size is for simplicity only. We could allow for different block sizes.
5The fact that we do not exactly replicate vintage R’s structure is not a problem because this vintage is only used for

estimation of β0 at t = R. Hence, this is equivalent to estimating β0 in this vintage using only final values, i.e. we obtain

β̂
∗
R = R−1 ∑R

s=1 y
∗
s rather than β̂

∗
(R) = R−1 ∑R

s=1 y
∗
s (R). Since these two estimates are asymptotically equivalent

under the assumption of finite revisions, our approach remains valid.
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Table 2: Structure of pseudo real-time data with r = 2

Vintage date (t)
Obs. s R R+ 1 · · · T + 1

1 y∗1 = yγ1
y∗1 = yγ1

y∗1 = yγ1

2 y∗2 = yγ2
y∗2 = yγ2

y∗2 = yγ2

...
...

...
...

R− 1 y∗R−1 = yγR−1
y∗R−1 = yγR−1

y∗R−1 = yγR−1

R y∗R = yγR
y∗R = yγR

y∗R = yγR

R+ 1 y∗R+1|1 = yηR+1|1 y∗R+1 = yηR+1

...

T y∗T = yηT
T + 1 y∗T+1|1 = yηT+1|1

For instance, if ηR+1 = 1, we do not observe y1|1 and therefore cannot obtain y∗R+1|1 = yηR+1|1. The

fact that we need to replicate the original vintage data structure is the crucial distinguishing feature

of our paper and the main motivation for proposing a new bootstrap algorithm.

Step 2 obtains a bootstrap analogue of β̂t using only final observations. Focusing on S̃∗
P (which

uses β̂
∗
t ) rather than on the real-time bootstrap statistic Ŝ∗

P (which uses the real-time bootstrap

estimate β̂
∗
(t)) simplifies the application and the theory of the bootstrap. This approach is justified

by Lemma 4.1, which shows the asymptotic equivalence of S̃P and ŜP .
6

Step 3 creates the bootstrap observations used for forecast evaluation. Specifically, for t = R, . . . , T ,

we let y∗t+1|1 ≡ y∗t+1 (t+ 1) = yηt+1|1 denote the bootstrap analog of yt+1|1 and set

f∗
t+1|1

(
β̂
∗
t

)
≡ f

(
y∗t+1|1, β̂

∗
t

)
= f

(
yηt+1|1, β̂

∗
t

)
.

This function is the bootstrap analog of ft+1|1
(
β̂t

)
≡ f

(
yt+1|1, β̂t

)
.

Step 4 computes S̃∗
P , the bootstrap analog of S̃P . This bootstrap test statistic centers f∗

t+1|1
(
β̂
∗
t

)
around ft+1|1

(
β̄t

)
, where7

β̄t ≡ E∗
(
β̂
∗
t

)
=

R

t
β̂R +

t−R

t
β̂P , for t = R,R+ 1, . . . , T,

with β̂R ≡ R−1
∑R

t=1 yt and β̂P ≡ P−1
∑T

t=R yt+1. Note that both β̂R and β̂P converge in probability

to β0 since R,P → ∞ jointly. This implies that β̄t →p β0 for t = R, . . . , T .

6For vintages t = R+1, . . . , T +1, an alternative estimator is β̂
∗
(t) = t−1 ∑t

s=1 y
∗
s (t) , the real-time bootstrap analog

of β̂ (t). Since the proofs of bootstrap validity are more involved for this estimator, we do not consider this alternative
here.

7Here and in the following, an asterisk appearing in E (and V ar) denotes expectation (and variance) with respect to
the bootstrap probability measure P ∗, conditional on the original sample.
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A naive application of the MBB to the out-of-sample test statistic S̃P would suggest we compute

S∗
P,naive ≡ P−1/2

T∑
t=R

(
f∗
t+1|1

(
β̂
∗
t

)
− ft+1|1

(
β̂t

))
.

However, this naive bootstrap statistic is not asymptotically valid. This was first remarked by Cor-

radi and Swanson (2003, 2007) in a context without data revisions. The main reason is that recur-

sive estimation of β0 implies that earlier observations in the sample are used more frequently than

subsequent observations. This implies that P−1/2
∑T

t=R(β̂
∗
t − β̂t) does not mimic the distribution

of P−1/2
∑T

t=R(β̂t − β0) when β̂t is recursively estimated. Consequently, β̂t no longer approximates

E∗(β̂
∗
t ). Corradi and Swanson (2007) propose a bias correction method to recenter P−1/2

∑T
t=R(β̂

∗
t−β̂t)

appropriately. Our approach is different: we replace β̂t by β̄t when defining S̃∗
P , and we show that

P−1/2
∑T

t=R(β̂
∗
t − β̄t) mimics the limiting behavior of P−1/2

∑T
t=R(β̂t − β0) successfully. It’s worth

re-iterating that this result requires that the centering constant is designed for use under the recursive

scheme. If instead, the parameters were estimated using a rolling window of R observations (e.g.,

β̂ (t) = R−1
∑t

s=t−R+1 ys (t), a distinct centering constant would be needed – an issue we do not

pursue here.

Next, we explain heuristically why our bootstrap algorithm is asymptotically valid. Let f∗
t+1|1 ≡

f∗
t+1|1(β0) = f

(
yηt+1|1, β0

)
. By considering two second-order mean value expansions of ft+1|1(β̄t) and

f∗
t+1|1(β̂

∗
t ), both around β0, we obtain the following stochastic expansion8 of S̃∗

P :

S̃∗
P = P−1/2

T∑
t=R

(
f∗
t+1|1(β̂

∗
t )− ft+1|1(β̄t)

)

= P−1/2
T∑

t=R

(
f∗
t+1|1 − ft+1|1

)
+ FP−1/2

T∑
t=R

(β̂
∗
t − β̄t) + o∗p(1)

≡ S∗
1P + FS∗

2P + o∗p(1),

where S∗
1P is the bootstrap analog of S1P , and S∗

2P is the bootstrap analog of S2P ; this is the bootstrap

analog of the asymptotic expansion of S̃P . We can further decompose S∗
2P as follows. Since β̂

∗
t =

t−1
∑t

s=1 y
∗
s and β̄t = t−1

∑t
s=1E

∗(y∗s), we have that

S∗
2P ≡ P−1/2

T∑
t=R

(β̂
∗
t − β̄t) = P−1/2

R∑
s=1

aR,0h
∗
s + P−1/2

P−1∑
i=1

aR,ih
∗
R+i ≡ S∗

2P.1 + S∗
2P.2,

where h∗s ≡ y∗s − E∗ (y∗s).

We now show that S̃∗
P is approximately centered at zero. First, since E∗(h∗s) = 0 by construction,

E∗(S∗
2P ) = 0. Thus, the bootstrap distribution of P−1/2

∑T
t=R(β̂

∗
t − β̄t) is centered at zero. This

8See Appendix A for the definition of o∗p(1), as well as the definition of
d∗→, which is used below.
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solves the bias problem discussed by Corradi and Swanson (2007) (who considered β̂t rather than β̄t

when forming their bootstrap statistic in a context without data revisions). Second, we can show

that E∗ (S∗
1P ) = Op (l/R) = op (1) if l/R = o (1). This follows from standard MBB results (see e.g.

Fitzenberger, 1998). Thus, E∗(S̃∗
P ) is asymptotically equal to zero.

We can also show that the bootstrap variance of S̃∗
P mimics the asymptotic variance Ω. To

see this, note that S∗
1P

d∗→ N (0,Ω1). This follows from Theorem 3.1 of Fitzenberger (1998) given

that f∗
t+1|1 = f

(
y∗t+1|1, β0

)
= f

(
yηt+1|1, β0

)
is obtained by applying the MBB to the first released

observations
{
yt+1|1 : t = R, . . . , T

}
. Thus, our bootstrap mimics Ω1.

Next, we explain why this bootstrap also mimics Ω2. First, note that since we resample the first R

observations independently of the last P observations, the covariance between S∗
2P.1 and S∗

2P.2 is zero

in the bootstrap world. Thus, the bootstrap mimics the zero asymptotic covariance between S2P.1

and S2P.2 (which is established in Lemma 4.2(a)). Second, note that the fact that we use the MBB

to obtain γs and ηs implies that the bootstrap variances of S∗
2P.1 and S∗

2P.2 converge to the long-run

variances Ω2.1 and Ω2.2, respectively.

Finally, note that our bootstrap also captures the covariance between S1P and S2P.2. The indepen-

dence between γs and ηs implies that the bootstrap analogs of S∗
1P and S∗

2P.1 are independent, but this

is not a concern since the covariance between S1P and S2P.1 is asymptotically zero by Lemma 4.2(b).

5.2 Extension to linear models

In the general framework, we forecast yt+τ |r′ using a linear model with predictors xt (t), where the

coefficients β0 are estimated recursively by OLS. The location model is a special case of this setup

where xs (t) ≡ 1 for all s, t, with the difference that the target variable is yt+τ |r′ (rather than yt+1|1).

The forecast function is now ft+τ |r′ ≡ f
(
yt+τ |r′ , xt (t) ;β0

)
, where xt (t) contains the predictors for

yt+τ |r′ available in vintage t. When lagged dependent variables are present, xt (t) may contain a mix

of preliminary and final observations.

The main difference with respect to the simple location model is in the bootstrap estimation of

β0. For each vintage t = R, . . . , T we resample the “pairs” zs ≡ (ys, x
′
s−τ )

′ used in estimating β0 at

each forecast origin. As in the location model, we estimate β̂
∗
t using only finally revised bootstrap

data. While we state the algorithm in the context of a single model, the extension to multiple models

is straightforward.

The bootstrap algorithm for forecasts based on general linear regression models is as follows.

Bootstrap algorithm for linear models

1. Let R − (1 + τ) + 1 = k1l and generate I1, . . . , Ik1 ∼ i.i.d. Uniform on {1 + τ , . . . , R − l + 1}.
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Then, for each i = 1, . . . , k1 and j = 1, . . . , l, set Ii + (j − 1) = γ1+τ+(i−1)l+(j−1) and let

{γs : s = 1 + τ , . . . , R} = {γ1+τ+(i−1)l+(j−1) : i = 1, . . . , k1; j = 1, . . . , l}.

Let T+τ−(R+1)+1 = k2l and generate J1, . . . , Jk2 ∼ i.i.d Uniform on {R+τ , . . . , T+τ−l+1}.
For each i = 1, . . . , k2 and j = 1, . . . , l, set Ji + (j − 1) = ηR+1+(i−1)l+(j−1), and let

{ηs : s = R+ 1, . . . , T + τ} = {ηR+1+(i−1)l+(j−1) : i = 1, . . . , k2; j = 1, . . . , l}.

2. For t = R, . . . , T , set

z∗′s ≡ (y∗s , x
∗′
s−τ ) =

{
(yγs

, x′γs−τ ) 1 + τ ≤ s ≤ R

(yηs , x
′
ηs−τ ) R+ 1 ≤ s ≤ t,

and compute

β̂
∗
t =

(
1

t

t∑
s=1+τ

x∗s−τx
∗′
s−τ

)−1 (
1

t

t∑
s=1+τ

x∗s−τy
∗
s

)
.

3. For t = R, . . . , T, let

(y∗t+τ |r′ , x
∗
t (t)

′) = (yηt+τ |r′ , xηt+τ−τ (ηt+τ − τ)′),

and compute

f∗
t+τ |r′

(
β̂
∗
t

)
≡ f

(
y∗t+τ |r′ , x

∗
t (t)

′, β̂
∗
t

)
.

4. Compute

S̃∗
P ≡ P−1/2

T∑
t=R

(
f∗
t+τ |r′(β̂

∗
t )− ft+τ |r′(β̄t)

)
,

where β̄t =
R
t β̂R + t−R

t β̂P , with

β̂R =

(
1

R

R∑
s=1+τ

xs−τx
′
s−τ

)−1 (
1

R

R∑
s=1+τ

xs−τys

)

and

β̂P =

(
1

P

T+τ∑
s=R+τ

xs−τx
′
s−τ

)−1 (
1

P

T+τ∑
s=R+τ

xs−τys

)
.

Remark 1 The presence of the predictors xt (t) when forecasting yt+τ |r′ creates some differences with

respect to the simple location model’s algorithm. The first difference is that we restrict the support of

the MBB indices γs to {1+τ , . . . , R} rather than {1, . . . , R}. This is because the recursive estimates of

β0 depend on (ys, xs−τ ) for s = 1+ τ , . . . , t. Thus, restricting γs this way ensures that we can evaluate

x∗s−τ ≡ xγs−τ . Setting xs (t) = 1 for all s implies this restriction is not needed. Similarly, we also

restrict the support of ηs to the set {R+ τ , ..., T + τ}. This ensures that ηs− τ is in the set {R, . . . , T},
for which we have both final and preliminary values of the variables. This is particularly important in

step 3, where we need to obtain the predictors x∗t (t) = xηt+τ−τ (ηt+τ − τ).
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Lemma 5.1 Under Assumptions 1-5 and letting l → ∞ such that l/min{√R,
√
P} → 0,

S̃∗
P ≡ P−1/2

T∑
t=R

(
f∗
t+τ |r′(β̂

∗
t )− ft+τ |r′(β̄t)

)
= S∗

1P + FBS∗
2P + o∗p (1) ,

where

S∗
1P = P−1/2

T∑
t=R

(
f∗
t+τ |r′ − ft+τ |r′

)
,

and

S∗
2P = aR,0P

−1/2
R∑

s=1+τ

(h∗s − h̄R) + P−1/2
P−1∑
i=1

aR,i(h
∗
R+i − h̄P ) ≡ S∗

2P.1 + S∗
2P.2,

where h∗t = x∗t−τ (y
∗
t − x∗′t−τβ0), h̄R = R−1

∑R
s=1+τ hs and h̄P = P−1

∑T+τ
s=R+τ hs.

Under our assumptions, S∗
1P

d−→ N(0,Ω1) by Fitzenberger (1998) (cf. Theorem 3.1). As in

the simple location model, the term S∗
2P has two components, S∗

2P.1 and S∗
2P.2, both centered at

zero asymptotically. To see this, note that h̄R = E∗
(
R−1

∑R
s=1+τ h

∗
s

)
+ OP (l/R), whereas h̄P =

E∗
(
P−1

∑P−1
i=1 h∗R+i

)
+OP (l/P ) . In addition, we can show that this term’s bootstrap variance con-

verges to Ω2 = Ω2.1+Ω2.2. Since the bootstrap covariance between S∗
2P.1 and S∗

1P is zero by construction

and we show that the covariance between S∗
1P and S∗

2P.2 is asymptotically equal to Ω12, the following

result follows.

Theorem 5.1 Suppose Assumptions 1-5 hold and l → ∞ such that l/min{√R,
√
P} → 0. Then,

sup
u∈R

∣∣∣P ∗
(
S̃∗
P ≤ u

)
− Pr

(
S̃μ
P ≤ u

)∣∣∣ →p 0,

where S̃μ
P = S̃P − P 1/2E

(
ft+τ |r′

)
.

The proof of Theorem 5.1 relies in part on Lemma A.4 in Appendix A (which shows the consistency

of the bootstrap variance estimator of S̃∗
P ). Theorem 5.1 implies that our bootstrap algorithm can

be used to approximate the asymptotic distribution of S̃μ
P , a centered version of S̃P . When the

null hypothesis H0 : E
(
ft+τ |r′

)
= 0 is true, S̃μ

P coincides with the test statistic S̃P , in which case

Theorem 5.1 implies the consistency of the bootstrap critical values obtained from S̃∗
P . When the null

hypothesis does not hold, Theorem 5.1 shows that the bootstrap distribution of S̃∗
P is consistent for

the distribution of S̃μ
P , implying that the bootstrap test based on S̃∗

P has power.

5.3 Bootstrap results for nested linear models

The bootstrap algorithm in the previous section can be applied when conducting a test of equal

predictability between nested models. Nevertheless, when the models are nested, the algorithm can
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be simplified considerably. In the following we present that simplification in the context of tests of

equal accuracy under quadratic loss. By doing so we are also able to discuss how the properties of the

data revisions affect whether Ω is positive.

In this application the loss differential defines the function ft+τ |r′ and takes the form

ft+τ |r′ ≡ f
(
yt+τ |r′ , xt (t) , β0

)
= (yt+τ |r′ − x′1,t (t)β1,0)

2 − (yt+τ |r′ − x′2,t (t)β2,0)
2,

where x2,t (t) =
(
x1,t (t)

′ , x22,t (t)′
)′

and β0 =
(
β′
1,0, β

′
2,0

)′
. Under the null of equal predictive ability,

model 2 includes dim(x22,s(t)) = k22 excess parameters, i.e., β2,0 = (β′
1,0, 0

′)′ and x1,t(t)
′β1,0 =

x2,t(t)
′β2,0.

As we have done before, we let β̂t =
(
β̂
′
1,t, β̂

′
2,t

)′
denote the estimators of β0 based on final data

and we let β̂ (t) =
(
β̂
′
1 (t) , β̂

′
2 (t)

)′
denote their real-time data analogs. ŜP is the test statistic based

on β̂ (t), and S̃P denotes its analog based on β̂t. Lemma 4.1 immediately implies that

ŜP = P−1/2
T∑

t=R+1

((yt+τ |r′ − x′1,t (t) β̂1,t)
2 − (yt+τ |r′ − x′2,t (t) β̂2,t)

2) + op(1) ≡ S̃P + op (1) . (3)

More importantly, since the models are nested we know that under the null, not only is Eft+τ |r′ = 0,

but also ft+τ |r′ = 0 since x1,t(t)
′β1,0 = x2,t(t)

′β2,0. This makes bootstrapping the distributions of ŜP

and S̃P easier since S̃P = FBP−1/2
∑T

t=R H(t)+ op(1) and the uncertainty in this term is determined

solely by fully revised data, and hence we no longer need to replicate the triangular structure of the

different vintages.

Before delineating this bootstrap, it is useful to note that the expansion for S̃P simplifies even

further under the null hypothesis. Let F ≡ E[ ∂
∂β′

0
ft+τ |r′ (β0)] = [F1, F2], with Fi ≡ E[ ∂

∂β′
i
ft+τ |r′ (β0)]

for i = 1, 2 and recall that B = diag(Bi). Since the models are nested we know that for a selection

matrix J ′ = (Ik1×k1 , 0k1×k22), H1(t) = J ′H2(t) and F1 = −F2J and hence

S̃P = F2(−JB1J
′ +B2)P

−1/2
T∑

t=R

H2(t) + op (1) . (4)

In addition, noting that for t = R, . . . , T ,

β̂2,t − β2,0 = B2 (t)H2 (t) ,

we can further rewrite (4) as

S̃P = F2(−JB1J
′B−1

2 + Ik2)P
−1/2

T∑
t=R

(β̂2,t − β2,0) + op (1) .

This expansion shows that we can replicate the distribution of S̃P by replicating the distribution

of P−1/2
∑T

t=R(β̂2,t − β2,0). Since this term only depends on OLS estimates from the larger model
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evaluated with final data, we can rely on Corradi and Swanson’s (2007) method to bootstrap its

distribution. This combined with a consistent estimator of the factor F2(−JB1J
′B−1

2 + Ik2) provides

a valid bootstrap method for computing the quantiles of S̃P under the null hypothesis.

The bootstrap algorithm is as follows.

Bootstrap algorithm for nested linear models

1. Let T − (1+ τ)+1 = kl and generate I1, . . . , Ik ∼ i.i.d. Uniform on {1+ τ , . . . , T − l+1}. Then,
for each i = 1, . . . , k and j = 1, . . . , l, set Ii + (j − 1) = γ1+τ+(i−1)l+(j−1) and let

{γs : s = 1 + τ , . . . , T} = {γ1+τ+(i−1)l+(j−1) : i = 1, . . . , k; j = 1, . . . , l}.

2. For s = 1 + τ , . . . , T , set

z∗s ≡ (y∗s , x
∗′
2,s−τ )

′ = (yγs
, x′2,γs−τ )

′,

and for t = R, . . . , T , compute

β̃
∗
2,t = argmin

β2

[
t−1

t∑
s=1+τ

(y∗s − x∗2,s−τ
′β2)

2 − β′
2(T − τ)−1

T∑
s=1+τ

2(ys − x′2,s−τ β̂2,t)x2,s−τ

]
.

3. Compute

S̃∗
P = F̂2(−JB̂1J

′B̂−1
2 + Ik2)P

−1/2
T∑

t=R

(β̃
∗
2,t − β̂2,t),

where F̂2 = 2P−1
∑T

t=R(yt+τ |r′ − x′2,t (t) β̂2,T )x
′
2,t(t), and B̂i = (T−1

∑T
s=1 xi,sx

′
i,s)

−1 are consis-

tent estimates of F2 and Bi for i = 1, 2, respectively.

Steps 1 and 2 amount to using the block bootstrap method of Corradi and Swanson (2007) to

replicate the distribution of P−1/2
∑T

t=R(β̂2,t − β2,0). Contrary to our previous bootstrap algorithms,

we need only one set of MBB indices in Step 1. The main reason for using two sets of MBB indices

in Step 1 of our previous methods was the need to replicate the triangular structure of the vintages

data. This is no longer required because the term that depends on the function ft+τ |r′ is zero when the

models are nested. The other key difference is that we now incorporate a bias correction term in the

definition of β̃
∗
2,t, i.e. we do not estimate β2,0 using the standard OLS estimator. This correction term

is one way of correcting for the bias introduced by the recursive estimation scheme in the bootstrap

world and was suggested by Corradi and Swanson (2007) in a context without data revisions.

The asymptotic validity of S̃∗
P follows from Theorem 1 of Corradi and Swanson (2007) and the

consistency of F̂2, B̂i for i = 1, 2, provided the condition F2(−JB1J
′ + B2) 
= 0 holds (ensuring that

Ω is positive). This last condition is non-trivial and can depend on the statistical properties of the
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revision process. Following Mankiw, Runkle, and Shapiro (1984), we treat revisions as consisting of

news (v) and noise (w) components. A revision is said to be pure news if it is uncorrelated with any

data available at the time of the provisional estimate. If the revision is correlated with the provisional

estimate, then the revision contains a noise component.

Specifically, in the context of verifying whether F2(−JB1J
′ + B2) 
= 0, consider the following

example in which r = 2 and an AR(2) model nests an AR(1) model, so that x2,t = (1, yt, yt−1)
′ and

x1,t = (1, yt)
′. The fully revised data and initial releases then take the form

yt = δ0 + δ1yt−1 + vt + et,

yt(t) = yt − vt + wt,

for error terms et, and revision components vt and wt, which are mutually independent i.i.d. zero-mean

Gaussian variates with variances σ2
e, σ

2
v, and σ2

w, respectively. If τ = 1 and the initial release is used

for forecast evaluation, this implies that F2 takes the form

F2 = 2E
[
(yt+1|1 − x′2,t (t)β2)x

′
2,t(t)

]
= 2E [(yt+1 − vt+1 + wt+1 − δ0 − δ1(yt − vt + wt))(1, yt − vt + wt, yt−1)]

= 2E [(et+1 + wt+1 − δ1(−vt + wt))(1, yt − vt + wt, yt−1)]

= (0,−2δ1σ
2
w, 0).

We immediately observe a simple instance for which F2, and hence F2(−JB1J
′+B2), will be zero. F2

is zero if δ1 is zero, or if there is no noise component to the revision (i.e., σ2
w = 0).

6 Monte Carlo simulations

In this section, we consider the finite sample size and power of bootstrap-based inference for tests

of equal predictive ability when data are subject to revisions. In each case we use OLS to estimate

two predictive models x′i,tβi i = 1, 2 and evaluate accuracy under quadratic loss. The design of the

experiments is comparable to that in Clark and McCracken (2009).

6.1 Non-nested models

We begin with size and power experiments associated with tests of equal predictive ability between

two non-nested models. The final data are generated according to

yt = 0.4x1,t−1 + (0.4 + Δ)x2,t−1 + ey,t + vy,t,

where ey,t and vy,t are independently generated as i.i.d. Gaussian variables with mean zero and

variance equal to σ2
e,y and σ2

v,y, respectively. Similarly, we let each regressor’s final data be generated
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as xi,t = exi,t+ vxi,t, i = 1, 2, where exi,t and vxi,t are also mutually independent (jointly with ey,t and

vy,t) i.i.d. Gaussian random variables with mean zero and variances σ2
e,x and σ2

v,x, respectively. For

instance, we can think of yt as the quarterly inflation and x1,t−1 and x2,t−1 as two different measures

of economic activity, as in the empirical application considered by Clark and McCracken (2009) and

the related application considered later in Section 7. When Δ = 0, these two measures have the same

predictive content for inflation, but not otherwise.

We consider the case of a single revision, where time t’s preliminary estimates of yt and xi,t are

yt (t) = yt − vy,t + wy,t, and xi,t (t) = xi,t − vxi,t + wxi,t for i = 1, 2,

with wy,t and wxi,t denoting i.i.d. Gaussian random variables with variances σ2
w,y and σ2

w,x, respectively.

These random variables are also mutually independent (jointly with ey,t, vy,t, exi,t and vxi,t). Following

the real-time data literature, we interpret vy,t and vxi,t as the news components of the revisions to

yt (t) and xi (t), respectively, whereas wy,t and wxi,t represent the noise components.9

Our goal is to test the equal predictability of a forecast of yt+1 (t+ 1) ≡ yt+1|1 using two non-nested

models, each based on a real-time predictor xi,t (t) for i = 1, 2. The null hypothesis is then

H0 : E(ft+1|1) ≡ E
[
(yt+1|1 − x1,t (t)β1,0)

2 − (yt+1|1 − x2,t (t)β2,0)
2
]
= 0.

This is true when Δ = 0 (used in the experiments describing the size properties of our test), but not

otherwise (we set Δ = 0.6 when evaluating power).

We follow Clark and McCracken (2009) and consider two different data-generating processes, DGP1

and DGP2. These include both noise and news components in the revisions and are described as

“DGP1, noise and news” and “DGP2, noise and news” in Table 3 below. We also consider two

variations of these DGPs, without a noise component, i.e. we set σ2
w,y = σ2

w,x = 0. In this case, we

write “DGP1, news only” and “DGP2, news only,” respectively.

The versions of DGP1 and DGP2 that contain both noise and news differ in the way they

parametrize the revisions process. More specifically,

� DGP1: σ2
e,y = 0.1, σ2

v,y = 0.9, σ2
w,y = 0.2, σ2

e,x = 1.7, σ2
v,x = 0.3, σ2

w,x = 2.

� DGP2: σ2
e,y = 0.8, σ2

v,y = 0.2, σ2
w,y = 0.2, σ2

e,x = 1.7, σ2
v,x = 0.3, σ2

w,x = 0.5.

9To explain briefly this terminology, take as an example the equations that describe yt and yt (t). Given that vy,t
enters yt and yt (t) with a positive and negative sign, respectively, the preliminary value yt (t) does not depend on the
component vy,t, implying that this term is uncorrelated with yt (t). This is the sense in which vy,t describes “news”.
Instead, the presence of wy,t in the preliminary value yt (t) and its absence from yt explain why we call this component
a “noise” component.
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As discussed by Clark and McCracken (2009), DGP2 is motivated by results in Aruoba (2008),

which provides empirically relevant values for the variance parameters based on real-time U.S. data on

the change in inflation and the output gap over the period 1965-2003. For instance, these parameter

values imply a correlation of about −0.2 between the revision in y (given by yt − yt (t)) and its initial

estimate yt (t), in line with the data. The variance of the revision in yt is given by σ2
v,y + σ2

w,y =

0.2 + 0.2 = 0.4 and is about 25% of the total variance of yt . Similarly, the variance of the revisions

for each x variables (given by σ2
v,x + σ2

w,x = 0.8) is about 40% of the total variance of its final value.

The biggest difference between DGP1 and DGP2 is that the revision variance of y is much larger

in DGP1 and is now about 70% of the total variance in y. Similarly, the revision variance of each x

variable is 15% larger than the variance of the final series. These differences imply that the impact

of the revision process is larger for DGP1 than for DGP2 and can lead to substantial differences in

actual power, as we will see when discussing Table 3 below.

At each forecast origin, we use the generated real-time data to make a one-step-ahead forecast

for the target variable yt+1|1. Forecasts take the form x′i,t(t)β̂i(t) with subsequent forecast errors

ûi,t+1|1 = yt+1|1−xi,t(t)
′β̂i(t) for i = 1, 2. As noted above, accuracy is evaluated under quadratic loss.

Table 3 contains the results. We consider three different tests. One is the bootstrap test described

in Section 5.2, which is used to obtain bootstrap critical values for ŜP . This test is a percentile-type

test that does not require studentizing the statistic ŜP . It is labeled “Bootstrap” in Table 3. We also

include two alternative tests. These tests are based on studentized versions of ŜP and rely on critical

values taken from the standard normal distribution (hence, they do not involve the bootstrap and

are included as benchmark methods). One is the Diebold and Mariano (1995) test, labeled t(Ω̂1P )

in Table 3. It takes the form t(Ω̂1P ) = Ω̂
−1/2
1P ŜP , where Ω̂1P is a consistent estimator of Ω1 given in

(1).10 The third test (which appears under the label t(Ω̂P ) in Table 3) is the one proposed by Clark

and McCracken (2009). It is given by t(Ω̂P ) = Ω̂
−1/2
P ŜP , where Ω̂P is a consistent estimator of ΩP in

(1). See Section 3.3 of Clark and McCracken (2009) for the details in obtaining Ω̂1P and Ω̂P . Relative

to their simulations, the only difference is that the relevant long-run variances are estimated using a

bandwidth of �min{R1/3, P 1/3}� rather than an ad hoc rule of twice the forecast horizon. Results are

obtained with 10,000 Monte Carlo replications and 499 bootstrap replications each. We set R = 80

and allow P to grow from 20 to 160. The block length is equal to l = �min{R1/3, P 1/3}�. This choice
ensures that l → ∞ such that l/min{√R,

√
P} → 0, as assumed in Theorem 5.1. It also ensures that

l > 1 when P = 20 and R = 80. The nominal level α is 5%.

10Here and throughout we use the original variant of the Diebold and Mariano statistic (S1, p. 135) but
replace the rectangular kernel with the Bartlet. The kernel bandwidth is �min(R,P )1/3� for the non-nested
comparisons and �T 1/5� for the nested comparisons.
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The left panel of Table 3 shows that the asymptotic-based tests are typically oversized, particularly

when P is small. This is especially true for the Diebold and Mariano test, which does not account for

parameter estimation uncertainty. The Clark and McCracken test, which accounts for the presence of

parameter estimation error, is usually more accurately sized. However, the results in Table 3 suggest

that t(Ω̂P ) still tends to overreject in finite samples. This is especially true for the DGPs without

noise, where the rejections rates of t(Ω̂P ) vary between 0.090 (P = 20) and 0.057 (P = 160) for DGP1,

news only. These numbers are 0.085 and 0.057 for DGP2, news only, respectively. In contrast, the

bootstrap test yields rejection rates equal to 0.062 and 0.051, for DGP1, news only, when P = 20 and

P = 160, respectively. These rates are 0.055 and 0.050 for DGP2, news only. Hence, the bootstrap

largely corrects the size distortions of the asymptotic-based tests when the DGP does not contain

noise. This is also true for the DGPs that include noise and news in the revision process. In this case,

Table 3 shows that the bootstrap can be slightly conservative, especially for DGP1. For DGP2, with

noise and news, the degree of conservativeness of the bootstrap is smaller than for DGP1. Overall,

it appears that the bootstrap test does a reasonable job controlling size in finite samples and, more

importantly, does so without having to compute Ω̂P .

The right panel of Table 3 shows that the three test statistics have power converging to 1 as P

increases for all DGPs, except DGP1 with noise and news in the revision process (we provide an

explanation below). The results show that the bootstrap rejection rates are typically smaller than

those of the asymptotic-based tests under the alternative. This is not surprising since the latter have

larger rejection rates than the bootstrap test even under the null hypothesis.

Unlike the case where revisions are pure news, actual power of the test can be quite low when

revisions also have a noise component. One example is “DGP1, noise and news.” While not im-

mediately obvious, the root of the problem lies with how the noisy revisions affect the mean loss

differential. For example, in DGPs 1 and 2 the population squared forecast errors take the form

u2i,t+1|1 = (yt+1|1 − xi,t(t)βi,0)
2, i = 1, 2. After taking expectations, straightforward algebra reveals

E(u2i,t+1|1) = β2
i,0σ

2
e,x + β2

i,0σ
2
v,x + σ2

e,y + σ2
w,y + β2

j,0σ
2
v,x + β2

j,0σ
2
w,x,

for i 
= j and hence

E(u21,t+1|1 − u22,t+1|1) = (β2
2,0 − β2

1,0)(σ
2
e,x − σ2

w,x).

When the revisions are pure news, as in DGP1 and 2, “news only,” this expectation is non zero so long

as β1,0 and β2,0 differ since σ2
e,x > 0 and σ2

w,x = 0. However, in the presence of a noise component,

whether it is nonzero also depends on the relative magnitudes of σ2
e,x and σ2

w,x. In fact, if we use

the specific parameterization of DGP1, we find that the absolute expected loss differential takes the

24



Table 3: Non-nested model size and power results with 5% nominal level

Tests P = 20 40 80 160 P = 20 40 80 160

size: DGP1, news only power: DGP1, news only

t(Ω̂1P ) 0.110 0.084 0.074 0.064 0.701 0.937 0.999 1.000

t(Ω̂P ) 0.090 0.071 0.064 0.057 0.695 0.935 0.999 1.000
Bootstrap 0.062 0.057 0.052 0.051 0.591 0.893 0.996 1.000

size: DGP2, news only power: DGP2, news only

t(Ω̂1P ) 0.100 0.085 0.075 0.060 0.492 0.742 0.960 0.999

t(Ω̂P ) 0.085 0.075 0.068 0.058 0.485 0.742 0.961 1.000
Bootstrap 0.055 0.053 0.056 0.050 0.400 0.676 0.941 0.999

size: DGP1, noise and news power: DGP1, noise and news

t(Ω̂1P ) 0.122 0.109 0.119 0.133 0.113 0.098 0.104 0.119

t(Ω̂P ) 0.062 0.047 0.046 0.046 0.084 0.068 0.068 0.070
Bootstrap 0.034 0.030 0.031 0.035 0.056 0.054 0.061 0.067

size: DGP2, noise and news power: DGP2, noise and news

t(Ω̂1P ) 0.101 0.079 0.065 0.048 0.230 0.348 0.550 0.830

t(Ω̂P ) 0.083 0.069 0.061 0.050 0.223 0.347 0.557 0.842
Bootstrap 0.051 0.048 0.050 0.043 0.164 0.292 0.513 0.817

value 1.43 when the data revision consists of news only, but reduces to 0.25 when the data revision

consists of news and noise. Clearly, when the data revision consists of news and noise, the mean loss

differentials are lower in absolute value, which in turn leads to significant reductions in power.

6.2 Nested models

For the nested case, we consider two DGPs with both noise and news. More specifically, the final data

are generated according to

yt = 0.7yt−1 + β22xt−1 + ey,t + vy,t

xt = 0.7xt−1 + ex,t + vx,t

V ar

⎛
⎜⎜⎝

ey,t
ex,t
vy,t
vx,t

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.8 cov(ey,t, ex,t) 0 0
cov(ey,t, ex,t) 0.2 0 0

0 0 0.2 0
0 0 0 0.3

⎞
⎟⎟⎠

where cov(ey,t, ex,t) = 0.35 for DGP1 and cov(ey,t, ex,t) = 0.25 for DGP2. We set β22 = 0 when

evaluating size and β22 = 0.3 when evaluating power.

The structure of the revisions is similar to what we considered in the non-nested case, i.e. we

consider a single revision, given by

yt (t) = yt − vy,t + wy,t and xt (t) = xt − vx,t + wx,t,

where wy,t and wx,t are the noise components. They are generated as i.i.d. Gaussian random variables
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Table 4: Nested model size and power results with 5% nominal level

Tests P = 20 40 80 160 P = 20 40 80 160

size: DGP1, noise and news power: DGP1, noise and news

t(Ω̂1P ) 0.101 0.122 0.170 0.248 0.290 0.413 0.637 0.873

t(Ω̂P ) 0.102 0.086 0.079 0.066 0.628 0.732 0.842 0.941
Bootstrap 0.095 0.080 0.073 0.061 0.619 0.726 0.837 0.939

size: DGP2, noise and news power : DGP2, noise and news

t(Ω̂1P ) 0.044 0.027 0.019 0.012 0.083 0.073 0.070 0.081

t(Ω̂P ) 0.111 0.100 0.085 0.074 0.376 0.386 0.385 0.379
Bootstrap 0.105 0.095 0.083 0.072 0.372 0.382 0.383 0.378

with mean zero and variances that differ across DGPs. In DGP1, we set σ2
w,y = 1.8 and σ2

w,x = 0.5.

As explained by Clark and McCracken (2009), this implies a correlation between the revision in y and

its final estimate of about −0.7, and a revisions variance about the same as the variance of the final

value, which is larger than what is observed for real-time data in inflation. With cov(ey,t, ex,t) = 0.35,

this choice of parameters implies a large value of Ω. In DGP2, we set σ2
w,y = 0.2 and σ2

w,x = 0.5. This

choice of parameters implies more realistic values for the correlation between the revisions and the

final values (as well as their proportional variances), but lead to smaller values of Ω. As we will see

later, this distinction seems to play a role in the finite-sample efficacy of the asymptotics.

At each forecast origin, we use the generated real-time data to make a one-step-ahead forecast

for the target variable yt+1|1. In each DGP the forecast takes the form x′i,t(t)β̂i(t) for i = 1, 2,

where x1,t(t)
′ = yt(t) and x2,t(t)

′ = (yt(t), xt(t)). The forecast errors take the form ûi,t+1|1 = yt+1|1 −
xi,t(t)

′β̂i(t) for i = 1, 2. For all DGPs, we test equal predictive ability under quadratic loss. In contrast

to the experiments in Table 3, here we use the simpler bootstrap algorithm described in Section 5.3 to

obtain critical values for the test statistic ŜP . We set the block length to l = �T 1/5�, which satisfies

the block length requirement of Theorem 1 in Corradi and Swanson (2007). We include the same two

asymptotic tests, t(Ω̂1P ) and t(Ω̂P ), as benchmarks. These tests are defined as previously, and their

critical values are obtained from the standard normal distribution.

Table 4 contains results for the nested models comparisons. The results replicate those of Clark and

McCracken (2009). Specifically, for DGP1, where Ω is large, the asymptotic test based on the Diebold

and Mariano statistic t(Ω̂1P ) is oversized under the null hypothesis, with null rejections rates that

increase from 0.101 when P = 20 to 0.248 when P = 160. In sharp contrast, in DGP2 the Diebold-

Mariano version is severely undersized with rejection rates that decline from 0.044 when P = 20 to

0.012 when P = 160. The bootstrap test is comparable to the Clark and McCracken test and both

lead to better size control under the null hypothesis.

26



6.3 Robustness

Each of the simulations were designed to align with our assumptions. For example, we require r to

be finite and, in particular, to be small relative to both R and P . In addition, we abstract from

annual benchmark revisions. In the following we provide a limited collection of simulations designed

to highlight the performance of the bootstrap when these assumptions are relaxed.

6.3.1 Small number of revisions

Here we consider a modified version of DGP2 applied to tests of equal accuracy for non-nested models.

The environment is largely the same as that in Section 6.1 except that we now allow values of r equaling

2, 4, 8, 12, and 16. For example, the final, first, and intermediate releases j ∈ {1, . . . , r − 1} of the

dependent variable take the form

yt|r = 0.4x1,t−1 + (0.4 + Δ)x2,t−1 + ey,t +

r−1∑
i=1

vy,t|i,

yt|1 = 0.4x1,t−1 + (0.4 + Δ)x2,t−1 + ey,t +

r−1∑
i=1

wy,t|i,

yt|(j+1) = yt|j − wy,t|j + vy,t|j .

Similarly, the final, first, and intermediate releases of each regressor xi,t i = 1, 2 take the form

xi,t|r = exi,t +

r−1∑
l=1

vxi,t|l,

xi,t|1 = exi,t +
r−1∑
l=1

wxi,t|l,

xi,t|(j+1) = xi,t|j − wxi,t|j + vxi,t|j .

While the parameterization is similar to DGP2, we rescale the variance of the news and noise

components so that their contribution to the variances of y and xi are invariant to the choice of r.

� DGP 3: σ2
e,y = 0.8, σ2

v,y = 0.2/(r−1), σ2
w,y = 0.2/(r−1), σ2

e,x = 1.7, σ2
v,x = 0.3/(r−1), σ2

w,x =

0.5/(r − 1).

In Table 5 we report actual size and power of our bootstrap test for a range of values of r when

the sample sizes are R = 80 and P = 40. As we saw in Table 3, regardless of the choice of r, actual

size of the test tends to be reasonable when using the percentile bootstrap. In addition, while actual

power varies across DGPs, the choice of r does not seem to be a leading determinant of that variation.
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Table 5: Non-nested model size and power results with 5% nominal level: multiple revisions

r =2 4 8 12 16 r =2 4 8 12 16

size: DGP3, news only power: DGP3, news only
0.053 0.050 0.053 0.053 0.049 0.676 0.688 0.692 0.686 0.683

size: DGP3, noise and news power: DGP3, noise and news
0.048 0.049 0.047 0.041 0.043 0.292 0.285 0.293 0.289 0.290

6.3.2 Annual revisions

Here we consider a stylized example of how our bootstrap can, but need not, be robust to the presence

of annual revisions. Suppose that in each quarterly vintage t there is an initial release yt|1. However,

revisions occur only once a year and when they do, all previous releases are final. Assume that all

realizations ys, s = 1, . . . , R− 1 are final.

We consider two autoregressive models for forecasting yt+1, one based on an AR(1) model, which

uses one lagged value as a predictor, and another based on a restricted version of an AR(2) model

(where the twice lagged value is the predictor). Specifically, the DGP can be described as

yt = xt−1β + et + vt and yt|1 = yt − vt + wt,

where et ∼ i.i.d.N(0, σ2
e), vt ∼ i.i.d.N(0, σ2

v), and wt ∼ i.i.d.N(μw, σ
2
w). We set xt−1 = yt−1 for the

AR(1) model and xt−1 = yt−2 for the AR(2) model. Under the null hypothesis, β = 0, which implies

yt ∼ i.i.d.N(0, σ2), with σ2 = σ2
e + σ2

v. We set β = 0.5 under the alternative hypothesis.

We consider a test of zero-mean prediction error based on an OLS-estimated autoregressive model

that does not contain an intercept. The one-step-ahead forecast is evaluated using the fully revised

value yt+1|r′ = yt+1. The moment of interest takes the form E(ft+1) = E(yt+1 − xt(t)β) = 0 where

the specific form of xt(t) depends on the lag length of the model.

For the AR(1) model, xt(t) = yt|1 for all t. Given our DGP, β = 0, which implies ft+1 = yt+1 and

the null hypothesis holds. Since the revision process is finite lived and the functional form for ft+1(β)

is time invariant, the asymptotics in Clark and McCracken still apply. Intuitively, our bootstrap

algorithm will also apply because it will enforce the feature that for every vintage, the most recent

value will be an initial release while all previous values will be final. Put differently, while our algorithm

does not replicate the entire pattern of the data when annual revisions are present, it replicates what

is needed for this example.

Now suppose the model has a twice-lagged value (as in the restricted AR(2) model described above)

and hence xt(t) = yt−1(t). We immediately find that the functional form for ft+1 changes across the

calendar year. In most periods it takes the form f
(1)
t+1(β) = yt+1 − βyt−1|1, but during the annual
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Table 6: Size and power results: AR(1) and AR(2) models

λ =1 4 12 λ =1 4 12

size: AR(1) power: AR(1)
0.056 0.051 0.072 0.959 0.964 0.977

size: AR(2) power: AR(2)
0.056 0.111 0.163 0.061 0.944 0.988

revision it takes the form f
(2)
t+1(β) = yt+1−βyt−1. In both cases, under our assumed DGP, ft+1 = yt+1

and the null hypothesis holds for all t. The problem is that Ef
(j)
t+1,β need not be constant for all

t. If we let F (j) denote Ef
(j)
t+1,β then F (1) = −Eyt−1|1 and F (2) = −Eyt−1 = 0, which are distinct

so long as F (1) is non-zero. Since F (j) varies, the asymptotics in Clark and McCracken and our

bootstrap algorithm do not apply, because neither is designed to distinguish between regular vintages

and vintages that contain annual revisions.

In Table 6 we provide simulation evidence on the actual size and power of the bootstrap-based test

of zero-mean prediction error in the presence of an annual revision. For both models, we let

σ2
e = 0.3, σ2

v = 0.2, σ2
w = 0.2, μw = 0.85.

The initial estimation sample size is R = 80, while the out-of-sample size is P = 80. We set the

bootstrap’s block length to 1 since our examples have the m.d.s. property. We consider annual

revision frequencies of λ = 1, 4, 12. When λ = 1, the vintages have a single regular revision structure.

When λ > 1, revisions only arise with frequency λ. For instance, if data have a quarterly frequency,

λ = 4 implies that each year we have one annual revision. If data are observed at the monthly

frequency, one annual revision corresponds to λ = 12.

When the model is an AR(1), our percentile bootstrap provides adequately sized tests of the null

regardless of annual revisions. In contrast, when the model is an AR(2), actual size of the test rises

sharply, well above the nominal 5% level. As to power, in most cases the test rejects with frequencies

near 95%. Even so, when the model is an AR(2) and there are no annual revisions, setting β to 0.5

does not constitute a deviation from the null and the rejection frequency aligns with the nominal size

of the test.

7 Forecasting inflation

In this section we apply our bootstrap procedure to tests of equal forecast accuracy in the context

of inflation forecasting. In particular, we do so with an eye toward revisiting Ang et al. (2007) who

compare several forecasting methods and conclude that survey-based forecasts of inflation are generally
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superior. While their results do support that thesis, they consider only current vintage data and hence

do not address a more realistic environment in which data are subject to revision.

With that in mind, we compare a small handful of linear forecasting models to survey forecasts

of both CPI– and PCE–based quarterly inflation and do so using vintage data. The surveys consist

of the Blue Chip (BC) and the Survey of Professional Forecasters (SPF). For the models we keep it

simple and consider only two from Ang et al. (2007): an AR(2) and an AR(2) augmented with one lag

of real GDP (RGDP) growth - the latter of which includes their preferred measure of economic slack.

We also consider an AR(2) that includes one lag of the change in total capacity utilization (TCU),

which is the preferred indicator of economic slack used by Stock and Watson (1999) who also conduct

forecasting exercises using current, rather than real-time, vintages of data.

Note that while revisions to CPI-based inflation are typically small, revisions to PCE-based in-

flation as well as RGDP and TCU can be substantial. Therefore, it is not immediately obvious that

our results will align with those of Ang et al. (2007). Unfortunately, these three series also exhibit

annual benchmark revisions and hence our assumption of a regular revision pattern across all vintages

is violated. Even so, we take some comfort from the simulations in Section 6.3.2 which suggest that

our bootstrap can yield reasonable results for models with short lags like the ones we consider.

Vintages of the CPI and PCE price indices, RGDP growth, and TCU are obtained from the

ALFRED database hosted by the Federal Reserve Bank of St. Louis. In each instance, the vintages

are available monthly. We use the January, April, July, and October vintages exclusively as these are

the first months for which (previous) quarter values can be constructed for all of the series. The SPF

is obtained from the Federal Reserve Bank of Philadelphia and is released within the first two weeks

of February, May, August, and November. The BC forecasts are obtained from the Haver database.

While they are updated monthly, we use those vintages that align with the SPF. Together this implies

a modest timing advantage for the surveys as they are released later than the implied forecast origins

for the estimated models.11

Within each vintage t we apply the following data transformations. Annualized quarterly inflation

(y
(1)
t = yt) is constructed as four times the log difference of the price index associated with the last

calendar month of quarters t and t− 1. Annual inflation is constructed in the obvious way as y
(4)
t =∑3

j=0 yt−j/4. RGDP growth is quarterly percent change. TCU is transformed to be the average of

the monthly first differences across the quarter.

11There are a few instances in which this timing is irregular. If there is more than one vintage within a month we use
the latest release. If there is no release within a month, but there is one early in the subsequent month, we use it.
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For each forecast horizon τ = 1, 4, the three OLS estimated forecasting models take the form

y
(τ)
t (t) = β0 + β1yt−τ (t) + β2yt−τ−1(t) + β3xt−τ (t) + u

(τ)
t (t)

where x is either omitted or denotes RGDP or TCU . The forecast origins t = R, . . . , T vary depending

on the target variables. When forecasting CPI inflation, the forecast origins range from 1996:Q4

through 2019:Q3, but when forecasting PCE inflation, they range from 2007:Q4 through 2019:Q3.12

The distinction arises because the SPF started forecasting PCE inflation in 2007:Q4, and for a given

target variable, we wanted to maintain a common sample across the three models and two surveys.

For CPI, we use the most recent 50 observations to estimate the model at the first origin to restrict

attention to a Great Moderation sample. For PCE, we continue to use an initial sample size of 50

for continuity across applications. Throughout, the forecasts are evaluated against the initial release

y
(τ)
t+τ |1.

Table 7 provides the results of our forecasting exercise. The first two columns denote the ten

pairwise model (survey) comparisons while the remaining columns distinguish the target variable and

horizon. For each permutation of model comparison, target variable, and horizon we report three

numbers. The first denotes the ratio of root mean squared errors (rmse) such that a value less than

one favors model (survey) 1. The second number denotes the percentile bootstrapped p-value (in

parentheses) associated with the test of equal forecast accuracy under quadratic loss.13 For the same

test, the third number is the p-value (in brackets) implied by the asymptotic distribution of the test

statistic delineated in Clark and McCracken (2009).

In nominal terms, of the forty potential pairwise comparisons, all but seven of the RMSE ratios are

quite close to one. In all of these instances, the bootstrapped and asymptotic p-values coincide in the

sense that there are no cases where one implies a rejection of the null of equal forecast accuracy at any

standard level of significance, while the other does not. Even so, for these instances, the conclusion

reached by Ang et al. (2007) remains valid – surveys tend to be more accurate than the models albeit

only modestly.

The exceptions all arise when forecasting PCE-based inflation at the longest horizon. Here we

find that the models actually perform better than both surveys, and by a substantial margin. In

accordance with the sizable difference in accuracy, the bootstrapped and asymptotic p-values are

typically smaller than elsewhere in the table. In fact, they are often less than 10 or even 5 percent,

12Note that, for example, a Q4 forecast origin is based on the January (February) vintage of data when using the
model (survey) to form a forecast.

13For ease of comparison, we use the bootstrap algorithm for linear models regardless of whether the models are nested
or non-nested. When a survey is used it is paired with the dependent variable to preserve dependence between the two.
In all comparisons, the algorithm shares a common seed across all 999 bootstrap replications.
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Table 7: Application to Forecasting Inflation

Model 1 Model 2
CPI PCE

τ = 1 τ = 4 τ = 1 τ = 4

AR(2) AR(2) + RGDP 0.993 1.006 0.988 1.024

(0.811) (0.567) (0.641) (0.951)

[0.239] [0.820] [0.144] [0.370]

AR(2) AR(2) + TCU 0.981 0.987 0.952 0.983

(0.475) (0.363) (0.941) (0.941)

[0.515] [0.344] [0.277] [0.627]

AR(2) + RGDP AR(2) + TCU 0.988 0.981 0.964 0.960

(0.439) (0.907) (0.969) (0.983)

[0.635] [0.346] [0.424] [0.227]

BC AR(2) 0.943 0.970 1.004 1.524

(0.441) (0.797) (0.975) (0.043)

[0.198] [0.749] [0.975] [0.023]

BC AR(2) + RGDP 0.936 0.976 0.992 1.560

(0.453) (0.711) (0.979) (0.049)

[0.160] [0.820] [0.953] [0.019]

BC AR(2) + TCU 0.925 0.957 0.956 1.498

(0.747) (0.669) (0.695) (0.053)

[0.127] [0.662] [0.625] [0.026]

SPF AR(2) 0.949 0.980 0.971 1.233

(0.543) (0.715) (0.363) (0.111)

[0.226] [0.825] [0.392] [0.027]

SPF AR(2) + RGDP 0.942 0.985 0.959 1.262

(0.531) (0.621) (0.337) (0.165)

[0.182] [0.888] [0.238] [0.028]

SPF AR(2) + TCU 0.931 0.967 0.924 1.212

(0.857) (0.591) (0.567) (0.171)

[0.147] [0.728] [0.148] [0.108]

BC SPF 0.994 0.990 1.034 1.236

(0.179) (0.455) (0.847) (0.197)

[0.104] [0.466] [0.768] [0.191]

Notes: For each pairwise comparison, the table presents: the ratio of root mean squared errors, the p-value
associated with a test of equal forecast accuracy based on our percentile bootstrap (in parentheses), and the
p-value for the same test based on the asymptotic distribution associated with the test statistic delineated
in Clark and McCracken (2009) (in square brackets). RMSE ratios less (greater) than one favor model 1 (2).
Results are provided for an initial window size R = 50 and horizons τ = 1 and τ = 4, across 999 bootstrap
replications. The forecast origins range from 1996:Q4 to 2019:Q3 for CPI, and 2007:Q4 to 2019:Q3 for PCE.
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suggesting statistically significant benefits to forecasting with the models rather than the surveys.

This sharply differs from the conclusion in Ang et al. (2007), though it bears emphasizing that the

sample we use is distinct from theirs. In particular, our sample for PCE inflation includes a period in

which the unemployment rate declined substantially from a high of 10 percent to a low of 3.5 percent.

In both surveys, especially the BC, longer horizon forecasts consistently overpredicted inflation as the

unemployment rate fell, suggesting an overemphasis on a Phillip’s curve relationship that has been a

topic of substantial debate since the Great Recession (e.g., Del Negro et al., 2020).

8 Conclusions

The main contribution of this paper is to propose a new bootstrap algorithm for out-of-sample pre-

dictability tests when the data are subject to a finite number of data revisions. Our bootstrap algo-

rithm replicates the triangular structure of the different vintages by relying on an application of the

moving blocks bootstrap. The novel feature of our method is that it not only preserves the time series

dependence of the data within each vintage, but it also preserves the dependence across the different

vintages. We provide a set of regularity conditions under which our bootstrap method is asymptoti-

cally valid. Simulations show that the proposed bootstrap tests have comparable size properties to the

data revision-robust test statistic proposed by Clark and McCracken (2009). However, the bootstrap

is easier to apply as it avoids estimating directly the asymptotic variance of the test. We conclude

with an application to inflation forecasting in the presence of real-time vintage data. In accordance

with the simulations, our empirical results suggest comparable p-values associated with tests of equal

forecast accuracy when using either bootstrap-based or asymptotic inference.
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A Appendix

As usual in the bootstrap literature, we use P ∗ to denote the bootstrap probability measure, conditional

on the original sample (defined on a given probability space (Ω,F , P )). For any bootstrap statistic t∗T ,

we write t∗T = o∗p (1), or t∗T →P ∗
0, when for any δ > 0, P ∗ (|t∗T | > δ) = op (1). We write t∗T = O∗

p (1),

when for all δ > 0 there exists Mδ < ∞ such that limT→∞ P [P ∗ (|t∗T | > Mδ) > δ] = 0. By Markov’s

inequality, this follows if E∗ |t∗T |q = Op (1) for some q > 0. Finally, we write t∗T →d∗ D, in probability, if

conditional on a sample with probability that converges to one, t∗T weakly converges to the distribution

D under P ∗, i.e. E∗ (f (t∗T )) →P E (f (D)) for all bounded and uniformly continuous functions f .

For simplicity, we treat β as a scalar and focus on the case of a single model, i.e., we let k = 1 in

Assumption 2. Following West (1996), we write “supt” to mean “supR≤t≤T .”

A.1 Auxiliary lemmas

Here, we provide several auxiliary lemmas, followed by their proofs.

Lemma A.1 Under Assumptions 1-5,

(a) supt

∣∣∣B̂(t)−B(t)
∣∣∣ = op(1).

(b) P−1/2
∑T

t=R

∣∣∣Ĥ(t)−H(t)
∣∣∣ = op(1).

(c) For any 0 ≤ a < 1/2, supt P
a|Ĥ(t)−H(t)| = op(1).

(d) For any 0 ≤ a < 1/2, supt |P a(β̂(t)− β0)| = op (1) .

Lemma A.1(d) is the analog of Lemma A.3(b) of West (1996) when the estimator of β0 is β̂ (t),

the OLS estimator based on real-time vintage data.

Lemma A.2 Under Assumptions 1-5 and assuming that l → ∞ such that l/min{√R,
√
P} → 0,

(a) For any 0 ≤ a < 1/2, supt P
a|H∗(t) − E∗H∗(t)| = o∗p(1), where H∗ (t) ≡ t−1

∑t
s=1+τ h

∗
s, with

h∗s ≡ x∗s−τ (y
∗
s − x∗′s−τβ0).

(b) supt |B∗(t)−B| = o∗p (1), where B∗(t) ≡ (t−1
∑t

s=1+τ x
∗
s−τx

∗′
s−τ )

−1.

(c) For any 0 ≤ a < 1/2, supt

∣∣∣P a
(
β̂
∗
t − β0

)∣∣∣ = o∗p (1).

(d) P−1/2
∑T

t=R(f
∗
t+τ |r′,β − F )BH∗(t) = o∗p (1).

(e) P−1/2
∑T

t=R F (B∗(t)−B)H∗(t) = o∗p (1).
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(f) P−1/2
∑T

t=R(f
∗
t+τ |r′,β − F )(B∗(t)−B)H∗(t) = o∗p (1).

Parts (a) and (c) are the bootstrap analogs of Lemma A.3 (a) and (b) of West (1996). Parts (d)

through (f) are the bootstrap analogs of Lemma A.4 of West (1996).

To prove Lemma A.2, we rely on the following result. It provides an asymptotic approximation to

the MBB expectation of a given observation in the MBB sample.

Lemma A.3 Let {Z∗
t : t = M, . . . ,M ′} denote a MBB resample of {Zt : t = N, . . . , N ′} with block

size l such that l → ∞ with l/n → 0, where n = N ′ −N + 1. If E |Zt| ≤ Δ, t = N, . . . , N ′, for some

Δ < ∞, then E∗(Z∗
t ) = Z̄n +Op (l/n), uniformly in t = M, . . . ,M ′, where Z̄n ≡ n−1

∑N ′
t=N Zt.

Lemma A.4 Under Assumptions 1-5 and l → ∞ such that l/min{√R,
√
P} → 0,

(a) V ar∗ (S∗
1P )

p−→ Ω1.

(b) V ar∗ (S∗
2P )

p−→ Ω2.

(c) Cov∗ (S∗
1P , S

∗
2P )

p−→ Ω12.

Proof of Lemma A.1. To prove (a), it suffices to show that supt

∣∣∣B̂−1(t)−B−1(t)
∣∣∣ = op(1).

We can write

B̂−1(t)−B−1(t) = t−1
t∑

s=t−r+1

(
xs−τ (t)xs−τ (t)

′ − xs−τx
′
s−τ

) ≡ t−1Vt,

where

Vt ≡
t∑

s=t−r+1

(xs−τ (t)xs−τ (t)
′ − xs−τx

′
s−τ ).

Hence, for any ε > 0,

P

(
sup
t

|t−1Vt| > ε

)
≤

T∑
t=R

P
(|t−1Vt| > ε

) ≤ ε−2
T∑

t=R

t−2E|Vt|2.

The result follows by noting that
∑T

t=R t−2 ≤ PR−2 → 0 and E|Vt|2 = O(1) by Assumption 4. Part

(b) follows similarly by writing t−1Vt ≡ Ĥ(t)−H(t) = t−1
∑t

s=1(hs (t)−hs). Part (c) follows similarly.

For part (d),

sup
t

|P a(β̂(t)− β0)| ≤ sup
t

|P a(β̂(t)− β̂t)|+ sup
t

|P a(β̂t − β0)|,

where supt |P a(β̂(t) − β̂t)| = op(1) given parts (a) and (c), and supt |P a(β̂t − β0)| = op(1) by West’s

(1996) Lemma A.3(b).
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Proof of Lemma A.2. Part (a). First, write

H∗(t) =
1

t

R∑
s=1+τ

h∗s + 1{t≥R+1}
1

t

t∑
s=R+1

h∗s

where 1{t≥R+1} is an indicator function equal to 1 if t ≥ R+ 1. This decomposition is useful because

h∗s = hγs
for s ≤ R, whereas h∗s = hηs for s > R. Using it, for any 0 ≤ a < 1/2, we write

P a sup
t

|H∗(t)− E∗H∗(t)| ≤ A∗
1 +A∗

2,

where

A∗
1 = P a 1√

R

∣∣∣∣∣ 1√
R

R∑
s=1+τ

(h∗s − E∗h∗s)

∣∣∣∣∣ , A∗
2 = P a sup

R+1≤t≤T

∣∣∣∣∣1t
t∑

s=R+1

(h∗s − E∗h∗s)

∣∣∣∣∣ ,
where A∗

1 = o∗p(1) since
∣∣∣R−1/2

∑R
s=1+τ (h

∗
s − E∗h∗s)

∣∣∣ = O∗
p(1). This follows by Chebyshev’s inequality,

since under Assumption 3 we can show that V ar∗
(
R−1/2

∑R
s=1+τ h

∗
s

)
= Op(1) by Corollary 3.1 of

Fitzenberger (1998). We are left to show that A∗
2 = o∗p(1). For simplicity, we assume that the number

of blocks of size l needed to obtain the t − R observations indexed by s = R + 1, . . . , t is k (where

R + 1 ≤ t ≤ T ), i.e. t − R = kl. Note that k is such that 1 ≤ k ≤ k2, since we have defined k2 as

the number of blocks of size l needed to obtain the last T + τ − (R + 1) + 1 = P + τ − 1 bootstrap

observations in the sample. With this notation, we can write

A∗
2 = P a sup

1≤k≤k2

∣∣∣∣∣ 1

kl +R

R+kl∑
s=R+1

(h∗s − E∗h∗s)

∣∣∣∣∣ ≤ P aR−1 sup
1≤k≤k2

∣∣∣∣∣
k∑

i=1

U∗
i

∣∣∣∣∣ ,
where

U∗
i ≡

R+(i−1)l+l∑
t=R+1+(i−1)l

(h∗t − E∗h∗t ) =
l∑

j=1

(hJi+j−1 − E∗(hJi+j−1)).

The last equality uses the fact that for t = R+ 1 + (i− 1) l, . . . , R+ (i− 1)l + l,

h∗t = hηR+1+(i−1)l+(j−1)
= hJi+j−1,

where Ji ∼ i.i.d. Uniform on {R+ τ , . . . , T + τ − l + 1}. To prove that A∗
2 = o∗p (1), it suffices to

show that sup1≤k≤k2 |P−1/2
∑k

i=1 U∗
i | = O∗

p (1). To prove this, note that by the independence of {Ji},
{U∗

i : i = 1, . . . , k} is an array of independent variables, implying that it is a martingale difference

array with respect to the σ-field G∗
i−1 = σ (J1, . . . , Ji−1). Using Theorem 15.14 of Davidson (1994), for

any ε > 0,

P ∗
(

sup
1≤k≤k2

∣∣∣∣∣P−1/2
k∑

i=1

U∗
i

∣∣∣∣∣ > ε

)
≤

E∗
∣∣∣P−1/2

∑k2
i=1 U∗

i

∣∣∣2
ε2

,
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where

E∗
(
P−1/2

k2∑
i=1

U∗
i

)2

= E∗
(
P−1/2

T+τ∑
s=R+1

(h∗s − E∗h∗s)

)2

= V ar∗
(
P−1/2

T+τ∑
t=R+1

h∗s

)
,

which is Op(1) by Corollary 3.1 of Fitzenberger (1998). The result follows by noting that P aR−1P 1/2 =

o (1) under Assumption 5 and a < 1/2.

Part (b). It suffices to show that supt |B∗(t)−1 − B−1| = o∗p(1), which follows if supt |B∗(t)−1 −
E∗B∗(t)−1| = o∗p(1) and supt |E∗B∗(t)−1 −B−1| = o∗p(1). Let a∗s = x∗s−τx

∗
s−τ

′, and as = xs−τx
′
s−τ . By

the triangle inequality,

sup
t

∣∣∣B∗(t)−1 − E∗B∗(t)−1
∣∣∣ ≤

∣∣∣∣∣R−1
R∑

s=1+τ

(a∗s − E∗a∗s)

∣∣∣∣∣+ sup
R+1≤t≤T

∣∣∣∣∣t−1
t∑

s=R+1

(a∗s − E∗a∗s)

∣∣∣∣∣ .
We can show that the two terms on the right-hand-side (RHS) of the inequality are o∗p(1) by relying

on an argument similar to that used in the proof of part (a). Thus, we only need to show that

supt |E∗B∗(t)−1 − B−1| = op(1). Noting that E∗B∗ (t)−1 = t−1
∑t

s=1+τ E
∗a∗s and B−1 = Eas (which

is constant under our stationarity assumption on xt), we can write

sup
t

∣∣∣E∗B∗(t)−1 −B−1
∣∣∣ = sup

t

∣∣∣∣∣t−1
t∑

s=1+τ

E∗(a∗s − Eas) +
t− τ

t
E (as)− E (as)

∣∣∣∣∣
≤ sup

t

∣∣∣∣∣t−1
t∑

s=1+τ

E∗(a∗s − Eas)

∣∣∣∣∣+O
(
R−1

)
,

where the last inequality uses the fact that τ is finite. Noting that a∗s = aγs
for s = 1 + τ , . . . , R and

a∗s = aηs for s ≥ R+ 1, we can apply the triangular inequality to obtain

sup
t

∣∣∣∣∣t−1
t∑

s=1+τ

E∗(a∗s − Eas)

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣∣
R−1

R∑
s=1+τ

E∗(a∗s − Eas)︸ ︷︷ ︸
≡ξ1

∣∣∣∣∣∣∣∣∣∣
+ sup

t

∣∣∣∣∣t−1
t∑

s=R+1

E∗(a∗s − Eas)

∣∣∣∣∣︸ ︷︷ ︸
≡ξ2

.

We can rewrite

ξ1 ≡
R− τ

R
(R− τ)−1

R∑
s=1+τ

E∗(a∗s − Eas),

where (R − τ)−1
∑R

s=1+τ E
∗(a∗s − Eas) is the MBB expectation of the sample average of a∗s − Eas.

By well-known properties of the MBB (see e.g. Fitzenberger, 1998), we can show that this is equal to

(R− τ)−1 ∑R
s=1+τ (as − Eas) + Op

(
l

R−τ

)
. Hence, ξ1 = R−1

∑R
s=1+τ (as − Eas) + Op (l/R). We can

show that ξ1 = Op

(
R−1/2

)
+ op (1) = op (1) under Assumption 3 and the fact that l/R = o (1). That

R−1
∑R

s=1+τ (as − Eas) is Op

(
R−1/2

)
follows by applying a maximal inequality for mixingales (see
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e.g. Lemma A.1 of Gonçalves and Vogelsang (2011)). This result follows if as − Eas ≡ xs−τx
′
s−τ −

Exs−τx
′
s−τ is an L2-mixingale of size −1 (which is ensured by Assumption 3). We study ξ2 next. This

term relies on the MBB indices ηs. Using again the simplified assumption that t − R = kl, we can

write

t∑
s=R+1

E∗(a∗s − Eas) =

k∑
i=1

l∑
j=1

E∗ (aJi+(j−1) − Eas
)
(where we note that Eas is a constant)

= l
k∑

i=1

E∗

⎛
⎜⎜⎜⎜⎜⎝l−1

l∑
j=1

(
aJi+(j−1) − Eas

)
︸ ︷︷ ︸

≡U∗
i

⎞
⎟⎟⎟⎟⎟⎠ = klE∗(U∗

1 ),

where the last equality holds because U∗
i is i.i.d. across i. Hence, we get that

ξ2 ≡ sup
R+1≤t≤T

∣∣∣∣∣t−1
t∑

s=R+1

E∗(a∗s − Eas)

∣∣∣∣∣ ≤ R−1 sup
1≤k≤k2

|klE∗(U∗
1 )| ≤ R−1 (k2l)︸︷︷︸

P−τ+1

|E∗(U∗
1 )|.

The result follows by Assumption 5 (which implies that R−1(P − τ + 1) = O(1)) and the fact that

E∗(U∗
1 ) = Op

(
P−1/2

)
. The latter follows because we can write

E∗(U∗
1 ) = k−1

2

k2∑
i=1

E∗ (U∗
i ) = E∗

⎧⎨
⎩(k2l)

−1
k2∑
i=1

l∑
j=1

(aJi+(j−1) − Eas)

⎫⎬
⎭ =

P

P − τ + 1
E∗

(
P−1

T+τ∑
t=R+τ

(a∗t − Eat)

)
,

which is the MBB bootstrap expectation of the sample average of {a∗t − Eat : t = R+ τ , . . . , T + τ}
(note that Eat = Eas by the stationarity assumption on xt). Thus, by the properties of the MBB

bootstrap expectation, we can write E∗(U∗
1 ) as

E∗(U∗
1 ) = P−1

T+τ∑
t=R+τ

(at − Eat) +Op (l/P ) = Op

(
P−1/2

)
+ op (1) = op (1) ,

since the first term after the first equality is Op

(
P−1/2

)
, under Assumption 3 (as explained above).

This concludes the proof that ξ2 = op (1) and the proof of part b).

Part (c). By definition, β̂
∗
t =

(
t−1

∑t
s=1+τ x

∗
s−τx

∗′
s−τ

)−1
t−1

∑t
s=1+τ x

∗
s−τy

∗
s . Letting y

∗
s = x∗′s−τβ0+

(y∗s − x∗′s−τβ0) and recalling the definitions of B∗ (t) and H∗ (t) yields β̂
∗
t − β0 = B∗ (t)H∗ (t). Hence,

P a sup
t

|β̂∗
t − β0| =P a sup

t
|B∗(t)H∗(t)|

≤ sup
t

∣∣∣B∗(t)−B
∣∣∣P a sup

t

∣∣∣H∗(t)− E∗H∗(t)
∣∣∣+BP a sup

t
|E∗H∗(t)|

+ sup
t

∣∣∣B∗(t)−B
∣∣∣P a sup

t

∣∣∣E∗H∗(t)
∣∣∣+BP a sup

t
|H∗(t)− E∗H∗(t)|.
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Since supt

∣∣∣B∗(t)−B
∣∣∣ = o∗p(1) by part (b), and for 0 ≤ a < 1/2, P a supt

∣∣∣H∗(t)−E∗H∗(t)
∣∣∣ = o∗p(1) by

part (a), the result follows by showing that P a supt |E∗H∗(t)| = op(1). This result follows by the exact

same arguments as in the proof of part (b). In particular, we can decompose supt |E∗H∗(t)| ≤ χ1+χ2

where χ1 = Op

(
R−1/2

)
+ Op (l/R) and χ2 = Op

(
P−1/2

)
+ Op (l/P ) (the proof of these results is the

same as that used to study ξ1 and ξ2 in part b)). It follows that

P a sup
t

|E∗H∗(t)| = Op(P
aR−1/2) +Op (P

al/R) +Op(P
aP−1/2) +Op (P

al/P ) = op (1) ,

since P and R are of the same order magnitude (by Assumption 5), and a < 1/2. This implies

that the first and third terms are op (1). The second and fourth terms are also op (1) under our

assumptions. For instance, for the last term, because l → ∞ such that l/
√
P = o (1), we can write

Op (P
al/P ) = Op(P

aP−1/2lP−1/2) = op (1) since l/P 1/2 = o (1) and P a−1/2 = o (1).

Part (d). Adding and subtracting appropriately, we can center f∗
t+τ |r′ and H∗(t) around their

bootstrap means, i.e., P−1/2
∑T

t=R(f
∗
t+τ |r′,β − F )BH∗(t) =

∑4
i=1Fi where

F1 = P−1/2
T∑

t=R

(f∗
t+τ |r′,β − E∗f∗

t+τ |r′,β)B(H∗(t)− E∗H∗(t)), F2 = P−1/2
T∑

t=R

(E∗f∗
t+τ |r′,β − F )BE∗H∗(t)

F3 = P−1/2
T∑

t=R

(E∗f∗
t+τ |r′,β − F )B(H∗(t)− E∗H∗(t)), and F4 = P−1/2

T∑
t=R

(f∗
t+τ |r′,β − E∗f∗

t+τ |r′,β)BE∗H∗(t).

To prove part (d), it suffices to show that each Fi vanishes asymptotically. We start by showing

F2 = op(1). Note that F2 is bounded by

F2 ≤ P−1/2
T∑

t=R

∣∣∣E∗f∗
t+τ |r′,β − F

∣∣∣B sup
t

∣∣∣E∗H∗(t)
∣∣∣,

implying that F2 = op(1) if P
−1/2

∑T
t=R

∣∣∣E∗f∗
t+τ |r′,β − F

∣∣∣ = Op(1) and supt

∣∣∣E∗H∗(t)
∣∣∣ = op(1), where

supt

∣∣∣E∗H∗(t)
∣∣∣ = op(1) follows from the result of part (c). To show P−1/2

∑T
t=R

∣∣∣E∗f∗
t+τ |r′,β − F

∣∣∣ =
Op(1), it suffices that P−1

∑T
t=R P 1/2E

∣∣∣E∗f∗
t+τ |r′,β − F

∣∣∣ = O(1). A sufficient condition is that

P 1/2E
∣∣∣E∗f∗

t+τ |r′,β −F
∣∣∣ = O(1) uniformly over t = R, . . . , T . This follows by using Jensen’s inequality,

which implies that

P 1/2E
∣∣∣E∗f∗

t+τ |r′,β − F
∣∣∣ ≤ P 1/2

(
E

(
E∗f∗

t+τ |r′,β − F
)2 )1/2

,

where we can show that E
(
E∗f∗

t+τ |r′,β − F
)2 ≤ O(1/P ) uniformly over t = R, . . . , T , given in par-

ticular Lemma A.3 and Assumption 3. Hence, P 1/2E
∣∣∣E∗f∗

t+τ |r′,β − F
∣∣∣ ≤ O(1), completing the proof

that F2 = o∗p(1).

The proof that F3 = o∗p(1) follows from part (a) and the fact P−1
∑T

t=R P 1/2
∣∣∣E∗f∗

t+τ |r′,β − F
∣∣∣ =

Op(1).
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For F4, it suffices to show E∗F4 = 0 and V ar∗(F4) = op(1). Note that E∗F4 = 0 by design.

Hence, we only need to show that V ar∗(F4) = op(1). For simplicity, we let τ = 1, and we define

a∗t+1 ≡ f∗
t+1|r′,β − E∗f∗

t+1|r′,β , and ct ≡ BE∗H∗(t). For i = 1, . . . , k2, we let ni = R + 1 + (i − 1)l, so

n1 = R+1 and nk2 = T +1− l+1, where R+1 is the index that links to the first element in the first

generated block, and T + 1 − l + 1 is the index that links to the first element in the last generated

block. Exploiting the independence between bootstrap blocks, we can write

V ar∗(F4) = E∗
(
P−1/2

T∑
t=R

a∗t+1ct

)2

= k−1
2

k2∑
i=1

l−1E∗

⎛
⎝ l∑

j=1

a∗ni+(j−1)cni+(j−1)−1

⎞
⎠2

.

Now, we let d∗ni+(j−1) = a∗ni+(j−1)cni+(j−1)−1 and obtain

V ar∗(F4) = k−1
2

k2∑
i=1

⎛
⎝l−1

l∑
j=1

E∗d∗2ni+(j−1) + 2l−1
l−1∑
m=1

l−m∑
j=1

E∗(d∗ni+(j−1)d
∗
ni+(j−1+m))

⎞
⎠ ,

where we can show that l−1
∑l

j=1E
∗d∗2ni+(j−1) ≤ Op(P

−1/2) and
∑l−m

j=1 E∗(d∗ni+(j−1)d
∗
ni+(j−1+m)) ≤

Op(l/P
1/2) for i = 1, . . . , k2. For brevity, we only show E∗d∗2ni+(j−1) = Op(P

−1/2) for i = 1, . . . , k2 and

j = 1, . . . , l. Using the definition d∗ni+(j−1) = a∗ni+(j−1)cni+(j−1)−1, we can write

E∗d∗2ni+(j−1) = V ar∗(a∗ni+(j−1))c
2
ni+(j−1)−1

≤
∣∣∣V ar∗(a∗ni+(j−1))− Γaa(0)

∣∣∣c2ni+(j−1)−1 + |Γaa(0)|c2ni+(j−1)−1

≤
∣∣∣V ar∗(a∗ni+(j−1))− Γaa(0)

∣∣∣ (B sup
t

|E∗H∗(t)|
)2

+ |Γaa(0)|
(
B sup

t
|E∗H∗(t)|

)2

where Γaa(0) ≡ V ar(ft+1|r′,β) and B are constants. The proof is completed by using the facts that

supt |E∗H∗(t)| ≤ Op(P
−1/2) (as shown in part (c)) and E

∣∣∣V ar∗(a∗ni+(j−1))− Γaa(0)
∣∣∣ = O(1).

For F1, it suffices to show E∗(F2
1 ) = op(1). For simplicity, we let τ = 1, k2 = 2, and for i = 1, 2,

ni = R + 1 + (i− 1)l. This simple setting implies that (T + 1)− (R + 1) + 1 = 2l. For t = R, . . . , T ,

we let a∗t+1 = f∗
t+1|r′,β − E∗f∗

t+1|r′,β and c∗t = B(H∗(t)− E∗H∗(t)). Now we write

E∗(F2
1 ) = E∗

(
P−1/2

T+1∑
t=R+1

a∗t c
∗
t−1

)2

= 2−1E∗

⎛
⎜⎜⎜⎜⎜⎝l−1/2

l∑
j=1

a∗n1+(j−1)c
∗
n1+(j−2)︸ ︷︷ ︸

A∗
1

+ l−1/2
l∑

j=1

a∗n2+(j−1)c
∗
n2+(j−2)︸ ︷︷ ︸

A∗
2

⎞
⎟⎟⎟⎟⎟⎠

2

where E∗(A∗
1 + A∗

2)
2 = E∗(A∗

1A
∗
1) + E∗(A∗

2A
∗
2) + 2E∗(A∗

1A
∗
2). The result follows by showing that

E(A∗
1A

∗
1), E(A∗

2A
∗
2) and E(A∗

1A
∗
2) all vanish asymptotically. Using the definition of c∗t and H∗(t), we
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can decompose A∗
1 and A∗

2 into A∗
1 = A∗

1.0 +A∗
1.1 and A∗

2 = A∗
2.0 +A∗

2.1 +A∗
2.2, respectively, as

A∗
1.0 = l−1/2

l∑
j=1

a∗n1+(j−1)

1

n1 + (j − 2)︸ ︷︷ ︸
M∗

1.0

(
R∑

s=2

B(h∗s − E∗h∗s)

)
︸ ︷︷ ︸

N ∗
1.0

A∗
1.1 = l−1/2

l∑
j=2

a∗n1+(j−1)

1

n1 + (j − 2)

⎛
⎝n1+(j−1)−1∑

s=n1

B(h∗s − E∗h∗s)

⎞
⎠ ,

A∗
2.0 = l−1/2

l∑
j=1

a∗n2+(j−1)

1

n2 + (j − 2)︸ ︷︷ ︸
M∗

2.0

(
R∑

s=2

B(h∗s − E∗h∗s)

)
︸ ︷︷ ︸

N ∗
1.0=N ∗

2.0

,

A∗
2.1 = l−1/2

l∑
j=1

a∗n2+(j−1)

1

n2 + (j − 2)︸ ︷︷ ︸
M∗

2.0=M∗
2.1

(
n1+l−1∑
s=n1

B(h∗s − E∗h∗s)

)
︸ ︷︷ ︸

N∗
2.1

, and

A∗
2.2 = l−1/2

l∑
j=2

a∗n2+(j−1)

1

n2 + (j − 2)

⎛
⎝n2+(j−1)−1∑

s=n2

B(h∗s − E∗h∗s)

⎞
⎠ .

These decompositions can be used to identify pairs of bootstrap terms that are independent. In

particular, any two terms that do not share the same base index set are independent. For an example,

M∗
1,0 is independent of N ∗

1,0. Exploiting this independence, we can write

E∗(A∗
1A

∗
1) = E∗(A∗

1.0A
∗
1.0) + E∗(A∗

1.1A
∗
1.1)

E∗(A∗
2A

∗
2) = E∗(A∗

2.0A
∗
2.0) + E∗(A∗

2.1A
∗
2.1) + E∗(A∗

2.2A
∗
2.2)

E∗(A∗
1A

∗
2) = E∗(A∗

1.1A
∗
2.2).

To show E∗(F2
1 ) = o∗p(1), it suffices to show that all the terms on the RHS of the above equations

vanish asymptotically. For instance, for E∗(A∗
1.0A

∗
1.0), we write

E∗(A∗
1.0A

∗
1.0) = E∗(R1/2M∗

1.0R
1/2M∗

1.0)E
∗(R−1/2N ∗

1.0R
−1/2N ∗

1.0)

where E∗(R−1/2N ∗
1.0R

−1/2N ∗
1.0) = Op(1) by Fitzenberger (1998) Corollary 3.1 and E∗(R1/2M∗

1.0R
1/2M∗

1.0) =

op(1) since R1/2(n1 + (j − 2))−1 ≤ R−1/2 < l−1/2 for j = 1, . . . , l. Using a similar method, one can

easily show E∗(A∗
2.0A

∗
2.0) = op(1) and E∗(A∗

2.1A
∗
2.1) = op(1). For E∗(A∗

1.1A
∗
2.2), we use the block’s

independence and write

E∗(A∗
1.1A

∗
2.2) = E∗(A∗

1.1)E
∗(A∗

2.2)

where E∗(A∗
1.1) = op(1) and E∗(A∗

2.2) = op(1). This is because

E∗(A∗
1.1) ≤ l−1

l∑
j=2

l1/2

n1 + (j − 2)

n1+(j−2)∑
s=n1

∣∣∣E∗
(
a∗n1+(j−1)B(h∗s − E∗h∗s)

) ∣∣∣
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where l1/2

n1+(j−2) ≤ l1/2

R for j = 2, . . . , l, and

∣∣∣E∗
(
a∗n1+(j−1)B(h∗s − E∗h∗s)

) ∣∣∣ = ∣∣∣Cov∗(f∗
n1+(j−1)|r′,β , Bh∗s)

∣∣∣ ≤ Op(1)

for s = n1, . . . , n1 + l − 1. Hence E∗(A∗
1.1) ≤ Op(

l
R1/2

l1/2

R1/2 ) where l
R1/2 → 0 and l1/2

R1/2 → 0. Using a

similar logic, we can show that E∗(A∗
2.2) = op(1). For E

∗(A∗
1.1A

∗
1.1), we directly compute the bootstrap

moment. We let D∗
n1+(j−1) = a∗n1+(j−1)

1
n1+(j−2)

∑n1+(j−1)−1
s=n1

B(h∗s − E∗h∗s) then

E∗(A∗
1.1A

∗
1.1) = l−1

l∑
j=2

E∗D∗2
n1+(j−1) + 2l−1

l−2∑
m=1

l−m∑
j=2

E∗(D∗
n1+(j−1)D∗

n1+(j−1+m))

≤ l−1
l∑

j=2

∣∣∣E∗D∗2
n1+(j−1)

∣∣∣+ 2l−1
l−2∑
m=1

l−m∑
j=2

∣∣∣E∗(D∗
n1+(j−1)D∗

n1+(j−1+m))
∣∣∣,

where
∣∣∣E∗D∗2

n1+(j−1)

∣∣∣ = op(1) and
∑l−m

j=2

∣∣∣E∗(D∗
n1+(j−1)D∗

n1+(j−1+m))
∣∣∣ = op(1). Note that for j =

2, . . . , l

∣∣∣E∗D∗2
n1+(j−1)

∣∣∣ =
∣∣∣∣∣∣E∗

⎛
⎝a∗n1+(j−1)

1

n1 + (j − 2)

n1+(j−1)−1∑
s=n1

B(h∗s − E∗h∗s)

⎞
⎠2∣∣∣∣∣∣

≤ R−2

∣∣∣∣∣∣E∗

⎛
⎝n1+(j−1)−1∑

s=n1

a∗n1+(j−1)B(hs − E∗h∗s)

⎞
⎠2∣∣∣∣∣∣ ≤ Op

(
l2

R2

)
.

We can also show that
∑l−m

j=2

∣∣∣E∗(D∗
n1+(j−1)D∗

n1+(j−1+m))
∣∣∣ ≤ Op(l

3/R2) where l3/R2 → 0 under our

assumption on l. In particular, here we provide the exact form of E∗D∗2
n1+(j−1) for j = 2. When j = 2,

E∗D2
n1+(2−1) =

1
n2
1
E∗ (a∗n1+1B(h∗n1

− E∗h∗n1
)
)2
, where

E∗ (a∗n1+1B(h∗n1
− E∗h∗n1

)
)2

=
1

P − l + 1

T+1−l+1∑
t=R+1

(
ft+1|r′,β − Cf,2

)2
(Bht −BCh,1)2

where Cf,2 = 1
P−l+1

∑T+1−l+1
s=R+1 fs+1|r′,β , and Ch,1 = 1

P−l+1

∑T+1−l+1
s=R+1 hs.

Part (e). Note that

P−1/2
T∑

t=R

F (B∗(t)−B)H∗(t) ≤ sup
t

|B∗(t)−B|FP−1/2
T∑

t=R

|H∗(t)− E∗H∗(t)|

+ sup
t

|B∗(t)−B|FP−1/2
T∑

t=R

|E∗H∗(t)|,

where supt |B(t)∗−B| = o∗p(1) by part (b). The result follows by showing that (i) P−1/2
∑T

t=R |H∗(t)−
E∗H∗(t)| = O∗

p(1) and (ii) P−1/2
∑T

t=R |E∗H∗(t)| = Op(1). To prove (i), it suffices to show E∗|H∗(t)−
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E∗H∗(t)| ≤ Op(R
−1/2) uniformly in t. For t = R, . . . , T , observe that E∗|H∗(t) − E∗H∗(t)| ≤[

E∗(H∗(t)− E∗H∗(t)
)2]1/2

, where

E∗(H∗(t)− E∗H∗(t)
)2

=E∗
(
t−1

R∑
s=1+τ

(h∗s − E∗h∗s) +
1{R+1≤t≤T}

t

t∑
s=R+1

(h∗s − E∗h∗s)

)2

=
R

t2
E∗

(
R−1/2

R∑
s=1+τ

(h∗s − E∗h∗s)

)2

+
1{R+1≤t≤T}(t−R)

t2
E∗

(
(t−R)−1/2

t∑
s=R+1

(h∗s − E∗h∗s)

)2

where 1{R+1≤t≤T} is an indicator function that equals 1 if R + 1 ≤ t ≤ T . Note that R
t2

≤ R−1,

(t − R)t−2 ≤ PR−2 = O(R−1), V ar∗(R−1/2
∑R

s=1+τ h
∗
s) = Op(1), V ar∗((t − R)−1/2

∑t
s=R+1 h

∗
s) =

Op(1), and Cov∗(R−1/2
∑R

s=1+τ h
∗
s, (t−R)−1/2

∑t
s=R+1 h

∗
s) = 0. To complete the proof, we show (ii).

This follows from noting that

P−1/2
T∑

t=R

|E∗H∗(t)| ≤ P 1/2 sup
t

|E∗H∗(t)| = Op (1) ,

since we already showed that supt |E∗H∗(t)| ≤ χ1+χ2 = Op

(
R−1/2

)
+Op (l/R)+Op(P

−1/2)+Op (l/P )

in part (c).

Part (f). Adding and subtracting appropriately,

P−1/2
T∑

t=R

(f∗
t+τ |r′,β − F )

(
B∗(t)−B

)
H∗(t) ≤ sup

t

∣∣∣B∗(t)−B
∣∣∣P−1/2

T∑
t=R

∣∣∣f∗
t+τ |r′,β − F

∣∣∣ |H∗(t)− E∗H∗(t)|

+ sup
t

∣∣∣B∗(t)−B
∣∣∣P−1/2

T∑
t=R

∣∣∣f∗
t+τ |r′,β − F

∣∣∣ |E∗H∗(t)|.

Given part b), it suffices to show (i) P−1/2
∑T

t=R

∣∣∣f∗
t+τ |r′,β − F

∣∣∣|H∗(t) − E∗H∗(t)| = O∗
p(1) and (ii)

P−1/2
∑T

t=R

∣∣∣f∗
t+τ |r′,β − F

∣∣∣ |E∗H∗(t)| = O∗
p(1). We can prove (i) by applying the Cauchy-Schwarz

inequality and using the fact that E∗(H∗(t) − E∗H∗(t)
)2

= Op

(
min(R,P )−1/2

)
+ Op (l/min(R,P )),

as in the proof of part (e). Part (ii) follows by noting that E∗(f∗
t+τ |r′,β − F

)2
= Op(1) (by Lemma

A.3) and the fact that supt |E∗H∗(t)| = Op

(
min(R,P )−1/2

)
+Op (l/min(R,P )).

Proof of Lemma A.3. Let M ′ − M + 1 = kl and generate I1, . . . , Ik ∼ i.i.d. Uniform on

{N, . . . , N ′ − l + 1}. Set

Z∗
M+(i−1)l+(j−1) = ZIi+(j−1), for i = 1, . . . , k, j = 1, . . . , l,

and note that this yields a bootstrap sample

{
Z∗
M = ZI1 , Z

∗
M+1 = ZI1+1, . . . , Z

∗
M+l−1 = ZI1+l−1, Z

∗
M+l = ZI2 , . . . , Z

∗
M ′ = ZIk+l−1

}
.
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Since Ii is i.i.d. Uniform on {N, . . . , N ′ − l + 1}, it follows that for i = 1, . . . , k, j = 1, . . . , l,

E∗(Z∗
M+(i−1)l+(j−1)) = E∗(ZIi+(j−1)) = (N ′ −N − l + 2)−1

N ′−l+1∑
t=N

Zt+(j−1),

which varies with j = 1, . . . , l, but not with i = 1, . . . , k. Let n = N ′ −N + 1 and Z̄n ≡ n−1
∑N ′

t=N Zt.

For each j = 1, . . . , l, we can write

(N ′ −N − l + 2)−1
N ′−l+1∑
t=N

Zt+(j−1) =
n

n− l + 1

(
n−1

N ′∑
t=N

Zt

)
+ (n− l + 1)−1Aj ,

where Aj ≡ ∑N ′−l+1
t=N Zt+(j−1) −

∑N ′
t=N Zt. Each term Aj can be written as a sum involving l − 1

observations in {Zt}. For instance, for j = 1,

(n− l + 1)−1A1 =
l − 1

n− l + 1
(l − 1)−1(ZN ′−l+2 + . . .+ ZN ′)︸ ︷︷ ︸

a1=Op(1)

= Op (l/n) if l/n = o (1) ,

where a1 = Op (1) because E |Zt| ≤ Δ for all t. For j = 2,

(n− l + 1)−1A2 =
l − 1

n− l + 1
(l − 1)−1(ZN+1 + ZN ′−l+3 + . . .+ ZN ′)︸ ︷︷ ︸

a2=Op(1)

= Op (l/n) if l/n = o (1) .

Since, for any j, we can show that (n− l+ 1)−1E |Aj | = O (l/n) uniformly in j, the result follows.

Proof of Lemma A.4. Part (a). Recall that S∗
1P = P−1/2

∑T+τ
t=R+τ (f

∗
t|r′ − ft|r′). We start

by showing S∗
1P = S̃∗

1P + o∗p(1) where S̃∗
1P ≡ P−1/2

∑T+τ
t=R+1(f

∗
t|r′ − E∗f∗

t|r′). Using S̃∗
1P helps to set

the first summand of S∗
1P from f∗

R+τ |r′ to f∗
R+1|r′ where f∗

R+1|r′ = fηR+1|r′ is the first element of the

first random block based on {ηR+1, . . . , ηR+1 + (l − 1)}, and S̃∗
1P is centered around bootstrap mean.

Adding and subtracting appropriately,

S∗
1P = S̃∗

1P + P−1/2Δ∗ + P−1/2Δ

where Δ∗ =
∑T+τ

t=R+τ f
∗
t|r′ −

∑T+τ
s=R+1 f

∗
s|r′ , Δ =

∑T+τ
s=R+1Ef∗

s|r′ −
∑T+τ

t=R+τ ft|r′ . Note that Δ∗ is at

most O∗
p(τ), and it is exactly zero when τ = 1. Hence P−1/2Δ∗ vanishes asymptotically. Let Cf =

P−1
∑T+τ

t=R+τ ft|r′ then

Δ =
T+τ∑

s=R+1

(
E∗fs|r′ − Cf + Cf

)− PCf =
T+τ∑

s=R+1

(
E∗fs|r′ − Cf

)
+ (τ − 1)Cf

where E∗fs|r′ − Cf ≤ Op(l/P ) for t = R + 1, . . . , T + τ by Lemma A.3, and Cf ≤ Op(1). This implies

P−1/2Δ ≤ P−1/2(P + τ − 1)Op(l/P ) + P−1/2(τ − 1)Op(1). Hence, P−1/2Δ vanishes asymptotically

under the block length condition l/
√
P → 0. Using these results, we can write S∗

1P = S̃∗
1P + o∗p(1).

This implies

lim
R,P→∞

V ar∗ (S∗
1P ) = lim

R,P→∞
V ar∗

(
S̃∗
1P

)
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where

V ar∗
(
S̃∗
1P

)
p−→ lim

R,P→∞
V ar

(
P−1/2

T+τ∑
t=R+τ

ft|r′

)
= Ω1

by Corollary 3.1 of Fitzenberger (1998).

Part (b). From Lemma 5.1, we know that

S∗
2P = aR,0P

−1/2
R∑

s=1+τ

(h∗s − h̄R)︸ ︷︷ ︸
S∗
2P.1

+P−1/2
P−1∑
i=1

aR,i(h
∗
R+i − h̄P )︸ ︷︷ ︸

S∗
2P.2

.

We first recenter S∗
2P by adding and subtracting the appropriate bootstrap mean of S∗

2P.1 and S∗
2P.2

S∗
2P.1 = aR,0P

−1/2
R∑

s=1+τ

(h∗s − E∗h∗s) + aR,0P
−1/2

R∑
s=1+τ

(E∗h∗s − h̄R)

S∗
2P.2 = P−1/2

P−1∑
i=1

aR,i(h
∗
R+i − E∗h∗R+i) + P−1/2

P−1∑
i=1

aR,i(E
∗h∗R+i + h̄P )

where aR,0P
−1/2

∑R
s=1+τ (E

∗h∗s − h̄R) = op(1) since aR,0 < ∞ and E∗h∗s − h̄R = Op(l/R) for s =

1 + τ , . . . , R, and P−1/2
∑P−1

i=1 aR,i(E
∗h∗R+i − h̄P ) = op(1) since P−1

∑P−1
i=1 aR,i → 1 − π−1 ln(1 + π)

(see West (1996), Lemma 4.1) and E∗h∗R+i − h̄P = Op(l/R) for i = 1, . . . , P − 1. Now, we can write

S∗
2P = aR,0P

−1/2
R∑

s=1+τ

(h∗s − E∗h∗s)︸ ︷︷ ︸
S̃∗
2P.1

+P−1/2
P−1∑
i=1

aR,i(h
∗
R+i − E∗h∗R+i)︸ ︷︷ ︸

S̃∗
2P.2

+o∗p(1),

and

lim
R,P→∞

V ar∗ (S∗
2P ) = lim

R,P→∞

(
V ar∗

(
S̃∗
2P.1

)
+ V ar∗

(
S̃∗
2P.2

)
+ 2Cov∗

(
S̃2P.1, S̃

∗
2P.2

))
.

Note that

lim
R,P→∞

V ar∗(S̃∗
2P.1) = lim

R,P→∞
a2R,0P

−1RV ar∗
(
R−1/2

R∑
s=1+τ

(h∗s − E∗h∗s)

)

where a2R,0P
−1R → π−1 ln2(1 + π) by West (1996), page 1082 (A-1a); by using Fitzenberger’s (1998)

Corollary 3.1,

V ar∗
(
R−1/2

R∑
t=1+τ

(h∗t − E∗h∗s)

)
p−→ V ar

(
R−1/2

R∑
t=1+τ

ht

)
→

∞∑
j=−∞

Γhh(j)

where Γhh(j) ≡ E(htht+j) = E(htht−j) ≡ Γhh(−j). Hence V ar∗(S̃∗
2P.1)

p−→ Ω2.1.

For V ar∗(S̃∗
2P.2), we first rewrite S̃∗

2P.2 as

S̃∗
2P.2 = P−1/2

P−1∑
i=1

aR,i(h
∗
R+i − E∗h∗R+i) = P−1/2

T+τ∑
t=R+1

ct(h
∗
t − E∗h∗t ).
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where

cR+i =

{
aR,i for 1 ≤ i ≤ P − 1

0 if P ≤ i ≤ P − 1 + τ .

By exploiting the independence between blocks, we write

V ar∗
(
P−1/2

T+τ∑
t=R+1

ct(h
∗
t − E∗h∗t )

)
= P−1

k2∑
i=1

V ar∗

⎛
⎝R+1+(i−1)l+l−1∑

t=R+1+(i−1)l

ct(h
∗
t − E∗h∗t )

⎞
⎠

︸ ︷︷ ︸
V

Now, we show V p−→ Ω2.2. Adding and subtracting appropriately, we write V = V1 + V2 + V3 where

V1 = P−1
k2∑
i=1

⎛
⎝R+1+(i−1)l+l−1∑

t=R+1+(i−1)l

c2tΓhh(0) + 2

l−1∑
j=1

R+1+(i−1)l+l−1−j∑
t=R+1+(i−1)l

ctct+jΓhh(j)

⎞
⎠

V2 = P−1
k2∑
i=1

R+1+(i−1)l+l−1∑
t=R+1+(i−1)l

c2t

(
V ar∗(h∗t )− Γhh(0)

)

V3 = 2

l−1∑
j=1

P−1
k2∑
i=1

R+1+(i−1)l+l−1−j∑
t=R+1+(i−1)l

ctct+j

(
Cov∗(h∗t , h

∗
t+j)− Γhh(j)

)

where V2 and V3 goes to zero in probability. We show V2 = op(1); similar arguments apply to proving

V3 = op(1). For i = 1, . . . , k2, we let mi = R + 1 + (i− 1)l. Using this notation, we can bound V2 as

follows

V2 = P−1
k2∑
i=1

l∑
j=1

c2mi+(j−1)

(
V ar∗(h∗mi+(j−1))−Γhh(0)

)
≤ P−1

k2∑
i=1

l∑
j=1

c2mi+(j−1)

∣∣∣V ar∗(h∗mi+(j−1))− Γhh(0)
∣∣∣ .

A sufficient condition for V2 = op(1) is
(
P−1

∑T+τ
t=R+1 c

2
t

)
E

∣∣∣V ar∗(h∗mi+(j−1))− Γhh(0)
∣∣∣ → 0 where

P−1
k2∑
i=1

l∑
j=1

c2mi+(j−1) = P−1
T+τ∑

t=R+1

c2t → 2[1− π−1 ln(1 + π)]− π−1 ln(1 + π)

by equation (A1-1b) in Lemma A.5 of West (1996). Thus, we only need to show E
∣∣∣V ar∗(h∗mi+(j−1))− Γhh(0)

∣∣∣ →
0. Using Jensen’s inequality,

E
∣∣∣V ar∗(h∗mi+(j−1))− Γhh(0)

∣∣∣ ≤ [
E

(
V ar∗(h∗mi+(j−1))− Γhh(0)

)2
]1/2

≤
[
V ar

(
V ar∗(h∗mi+(j−1))

)
+

(
EV ar∗(h∗mi+(j−1))− Γhh(0)

)2
]1/2

where for i = 1, . . . , k2,

V ar∗(hmi+(j−1)) =
1

P + τ − l

T+τ−l+1∑
t=R+1

(
ht+(j−1) − Ch,j

)2
with Ch,j = 1

P + τ − l

T+τ−l+1∑
s=R+1

hs+(j−1).
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Using the uniform fourth moment bound on ht, V ar
(
V ar∗(h∗mi+(j−1))

)
→ 0. Note that

EV ar∗(h∗mi+(j−1))− Γhh(0) = −E(Ch,j)2 ≤ O

(
1

P + τ − l

)
→ 0

which completes the proof of V2 = op(1). Similar proofs can be found in the proof of Lemma A3 of

Corradi and Swanson (2003) equation (38)-(39) or equation A.9 of Corradi and Swanson (2007).

Since V2 and V3 both converge to zero in probability, we only need to focus on V1. Adding and

subtracting, we can write V1 = V1.1 + V1.2 where

V1.1 =P−1
k2∑
i=1

⎛
⎝R+1+(i−1)l+l−1∑

t=R+1+(i−1)l

c2tΓhh(0) + 2

l−1∑
j=1

R+1+(i−1)l+l−1∑
t=R+1+(i−1)l

c2tΓhh(j)

⎞
⎠

V1.2 =P−1
k2∑
i=1

⎛
⎝2

l−1∑
j=1

⎛
⎝R+1+(i−1)l+l−1−j∑

t=R+1+(i−1)l

ctct+j −
R+1+(i−1)l+l−1∑
t=R+1+(i−1)l

c2t

⎞
⎠Γhh(j)

⎞
⎠ ,

where V1.2 converges to zero. This step can be shown by using an argument similar to the proof of

West (1996), equation (A-1b). In particular, for i = 1, ..., k2, we can write

2l−1
l−1∑
j=1

⎛
⎝R+1+(i−1)l+l−1−j∑

t=R+1+(i−1)l

ctct+j −
R+1+(i−1)l+l−1∑
t=R+1+(i−1)l

c2t

⎞
⎠Γhh(j) → 0.

Now, we are only left with V1.1 and

V1.1 =

(
P−1

T+τ∑
t=R+1

c2t

)(
l−1∑
−l+1

Γhh(j)

)
,

where

P−1
T+τ∑

t=R+1

c2t = P−1
P−1∑
i=1

a2R,i → 2[1− π−1 ln(1 + π)]− π−1 ln(1 + π).

Hence,

lim
R,P→∞

V ar∗ (S∗
2P.2) = lim

R,P→∞
V + op(1)

p−→ lim
R,P→∞

V1.1 = Ω2.2.

Part (c). Using the results of part (a) and (b) of this lemma, we can write

lim
R,P→∞

Cov∗(S1P , S2P ) = lim
R,P→∞

Cov∗
(
S̃1P , (S̃

∗
2P.1 + S̃∗

2P.2)
)
.

Exploiting the independence between {γ1+τ , . . . , γR} and {ηR+1, . . . , ηT+τ}, we can write

Cov∗
(
S̃1P , (S̃

∗
2P.1 + S̃∗

2P.2)
)
= Cov∗

(
S̃∗
1P , S̃

∗
2P.2

)
where Cov∗

(
S̃∗
1P , S̃

∗
2P.1

)
= 0. Using the notation cR+i, see definition in Part (b), we can write

Cov∗(S̃∗
1P , S̃

∗
2P.2) = P−1Cov∗

(
T+τ∑

t=R+1

(f∗
t|r′ − E∗f∗

t|r′),
T+τ∑

t=R+1

ct(h
∗
t − E∗h∗t )

)
.
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Exploiting the independence between blocks, we write

P−1Cov∗
(

T+τ∑
t=R+1

(f∗
t|r′ − E∗f∗

t|r′),
T+τ∑

t=R+1

ct(h
∗
t − E∗h∗t )

)

=P−1
k2∑
i=1

Cov∗

⎛
⎝R+1+(i−1)l+l−1∑

t=R+1+(i−1)l

(f∗
t|r′ − E∗f∗

t|r′),
R+1+(i−1)l+l−1∑
t=R+1+(i−1)l

ct(h
∗
t − E∗h∗t )

⎞
⎠

︸ ︷︷ ︸
W

For notation simplicity, we let bi = R+ 1 + (i− 1)l for i = 1, . . . , k2 then W = W1 +W2 +W3 where

W1 = P−1
k2∑
i=1

l−1∑
m=1

l∑
j=1

Cov∗
(
f∗
bi+(j−1)|r′ , cbi+(j−1)+mh∗bi+(j−1)+m

)
,

W2 = P−1
k2∑
i=1

l∑
j=1

Cov∗
(
f∗
bi+(j−1)|r′ , cbi+(j−1)h

∗
bi+(j−1)

)
,

W3 = P−1
k2∑
i=1

l−1∑
m=1

l∑
j=1

Cov∗
(
f∗
bi+(j−1)+m|r′ , cbi+(j−1)h

∗
bi+(j−1)

)
.

Adding and subtracting appropriately, we have

W1 = W1.1 + (W1 −W1.1) where W1.1 = P−1
k2∑
i=1

l−1∑
m=1

l∑
j=1

cbi+(j−1)+mΓfh(−m),

W2 = W2.1 + (W2 −W2.1) where W2.1 = P−1
k2∑
i=1

l∑
j=1

cbi+(j−1)Γfh(0)

W3 = W3.1 + (W3 −W3.1) where W3.1 = P−1
k2∑
i=1

l−1∑
m=1

l∑
j=1

cbi+(j−1)Γfh(m)

where Γfh(m) = E(ft|r′ht+m) = E(ft|r′ht−m) = Γfh(−m). Note that |W1 − W1.1| = op(1), |W2 −
W2.1| = op(1) and |W3 −W3.1| = op(1) by using the same arguments that proves the results of part

(b). Further adding and subtracting on W1.1 and W3.1, we can write

W1.1 = W1.1.1 + (W1.1 −W1.1.1) where W1.1.1 =
l−1∑
m=1

P−1
k2∑
i=1

l∑
j

cbi+(j−1)Γfh(−m),

W3.1 = W3.1.1 + (W3.1 −W3.1.1) where W3.1.1 =
l−1∑
m=1

P−1
k2∑
i=1

l∑
j=1

cbi+(j−1)Γfh(m)

Note that |W1.1 − W1.1.1| = o(1) and |W3.1 − W3.1.1| = o(1) by an argument similar to that used in

the proof of West’s (1996) Lemma A.6. Hence,

Cov∗
(
S̃∗
1P , S̃

∗
2P.2

)
p−→ P−1

(
P−1∑
i=1

aR,i

)
l−1∑

m=−l+1

Γfh(m) → Ω12

where P−1
(∑P−1

i=1 aR,i

)
→ 1− π−1 ln(1+ π), see remark in part (b) or by Lemma A6 of West (1996).
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A.2 Proofs of results in the paper

Proof of Lemma 4.1. Given Lemma A.1, by two mean value expansions of ft+τ |r′(β̂t) and

ft+τ |r′(β̂ (t)) around β0, we can write

ŜP − S̃P = FP−1/2
T∑

t=R

(β̂(t)− β̂t) + op(1).

The result follows by showing that P−1/2
∑T

t=R(β̂ (t) − β̂t) = op (1). Using the definitions of β̂t and

β̂ (t), we can write

P−1/2
T∑

t=R

(β̂ (t)− β̂t) =
3∑

i=1

Ci,

where C1 = P−1/2
∑T

t=R

(
B̂(t)−B(t)

)
H(t), C2 = P−1/2

∑T
t=R B(t)

(
Ĥ(t)−H(t)

)
, and

C3 = P−1/2
∑T

t=R

(
B̂(t)−B(t)

)(
Ĥ(t)−H(t)

)
. Next, we show Ci = op(1) for i = 1, 2, 3. Starting

with C1,
C1 ≤ sup

t

∣∣∣B̂(t)−B(t)
∣∣∣P−1/2

T∑
t=R

|H(t)|,

where supt

∣∣∣B̂(t)−B(t)
∣∣∣ = op(1) by Lemma A.1 (a) and P−1/2

∑T
t=R |H(t)| = Op(1) by the proof of

West’s (1996) Lemma A.4 (c). Next, adding and subtracting appropriately,

C2 = P−1/2
T∑

t=R

B
(
Ĥ(t)−H(t)

)
+ P−1/2

T∑
t=R

(B(t)−B)
(
Ĥ(t)−H(t)

)
.

It follows that

C2 ≤ BP−1/2
T∑

t=R

(
Ĥ(t)−H(t)

)
+ sup

t
|B(t)−B|P−1/2

T∑
t=R

|Ĥ(t)−H(t)|

where P−1/2
∑T

t=R |Ĥ(t)−H(t)| = op(1) by Lemma A.1 (b), and supt |B(t)−B| = op(1) by Assump-

tion 2 (a). We can show that C3 = op (1) by a similar argument, completing the proof.

Proof of Lemma 4.2. Part (a) follows from eq. (A-1.c) in Lemma A5 in West (1996), whereas

part (b) follows from West’s (1996) Lemma A2 (a).

Proof of Lemma 5.1. This result is obtained by taking the difference of two second-order mean

value expansions. The first expansion expands f∗
t+τ |r′(β̂

∗
t ) around β0, whereas the second expansion

expands ft+τ |r′(β̄t) around β0, where β̄t ≡ t−1Rβ̂R + t−1(t−R)β̂P , with

β̂R ≡ (R−1
∑R

s=1+τ xs−τx
′
s−τ )

−1R−1
∑R

s=1+τ xs−τys and β̂P ≡ (P−1
∑T+τ

s=R+τ xs−τx
′
s−τ )

−1P−1
∑T+τ

s=R+τ xs−τys.

More specifically, we have that

P−1/2
T∑

t=R

f∗
t+τ |r′

(
β̂
∗
t

)
= P−1/2

T∑
t=R

f∗
t+τ |r′ + ξ∗1 + ξ∗2
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where

ξ∗1 ≡ P−1/2
T∑

t=R

f∗
t+τ |r′,β(β̂

∗
t − β0) and ξ∗2 ≡ 0.5P−1/2

T∑
t=R

∂2

∂β2 f
∗
t+τ |r′(β̃

∗
t )(β̂

∗
t − β0)

2,

where β̃
∗
t lies between β̂

∗
t and β0, and we recall that f∗

t+τ |r′ ≡ f∗
t+τ |r′(β0) and f∗

t+τ |r′,β ≡ f∗
t+τ |r′,β (β0).

To show ξ∗2 = o∗p(1), note that

|ξ∗2| ≤ 0.5

(
sup
t

∣∣∣P 1/4
(
β̂
∗
t − β0

)∣∣∣)2

P−1
T∑

t=R

∣∣∣∣ ∂2

∂β2 f
∗
t+τ |r′

(
β̃
∗
t

)∣∣∣∣ .
The result follows by Lemma A.2 (c) and the fact that we can show that P−1

∑T
t=R | ∂2

∂β2 f
∗
t+τ |r′

(
β̃
∗
t

)
| =

O∗
p (1), as we argue next. By Assumption 1, and the fact that β̃

∗
t

P ∗−−→ β0, we can bound | ∂2

∂β2 f
∗
t+τ |r′

(
β̃
∗
t

)
|

by supβ∈N | ∂2

∂β2 fηt+τ |r′(β)| ≤ mηt+τ
≡ m∗

t+τ . The result follows by Markov’s inequality,

P ∗
(
P−1

T∑
t=R

∣∣∣∣ ∂2

∂β2 f
∗
t+τ |r′(β̃

∗
t )

∣∣∣∣ > δ

)
≤ P ∗

(
P−1

T∑
t=R

m∗
t+τ > δ

)
≤ δ−1P−1

T∑
t=R

E∗(m∗
t+τ ),

since P−1
∑T

t=R E∗(m∗
t+τ ) = Op(1) by the properties of the MBB expectation. For ξ∗1, adding and

subtracting appropriately yields

ξ∗1 = P−1/2
T∑

t=R

f∗
t+τ |r′,β

(
β̂
∗
t − β0

)
=

4∑
i=1

ξ∗1.i,

where

ξ∗1.1 = FBP−1/2
T∑

t=R

H∗(t), ξ∗1.2 = P−1/2
T∑

t=R

(f∗
t+τ |r′,β − F )BH∗(t)

ξ∗1.3 = P−1/2
T∑

t=R

F (B∗(t)−B)H∗(t), and ξ∗1.4 = P−1/2
T∑

t=R

(f∗
t+τ |r′,β − F )(B∗(t)−B)H∗(t).

By Lemma A.2 (d),(e) and (f), ξ∗1,i = o∗p (1) for i = 2, 3, 4, respectively. Hence,

P−1/2
T∑

t=R

f∗
t+τ |r′(β̂

∗
t ) = P−1/2

T∑
t=R

f∗
t+τ |r′ + FBP−1/2

T∑
t=R

H∗(t) + o∗p(1). (5)

Similarly, an expansion of ft+τ |r′(β̄t) around β0 yields

P−1/2
T∑

t=R

ft+τ |r′(β̄t) = P−1/2
T∑

t=R

ft+τ |r′ + ξ̄1 + ξ̄2,

where

ξ̄1 = P−1/2
T∑

t=R

ft+τ |r′,β(β̄t − β0) and ξ̄2 = 0.5P−1/2
T∑

t=R

∂2

∂β2 ft+τ |r′(β̈t)(β̄t − β0)
2.
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where β̈t lies between β̄t and β0, and ft+τ |r′,β ≡ ft+τ |r′,β(β0). We can show that ξ̄2 = op(1) using

a similar argument to that used to show that ξ∗2 = o∗p (1). In particular, it suffices to show that

supt
∣∣P 1/4

(
β̄t − β0

)∣∣ = op (1) and P−1
∑T

t=R

∣∣∣ ∂2

∂β2 ft+τ |r′
(
β̈t

)∣∣∣ = Op (1). For ξ̄1, note that by definition

we can write β̄t − β0 =
R
t (β̂R − β0) +

t−R
t (β̂P − β0), where

β̂R − β0 = B (R)H (R) ,

with B(R) ≡
(
R−1

∑R
s=1+τ xsx

′
s

)−1
, H(R) = R−1

∑R
s=1+τ hs, using our previous definitions of B (t)

and H (t). Similarly, given the definition of β̂P , we can write

β̂P − β0 =

(
P−1

T+τ∑
s=R+τ

xsx
′
s

)−1

︸ ︷︷ ︸
≡BP

P−1
T+τ∑

s=R+τ

hs

︸ ︷︷ ︸
≡HP=h̄P

.

With this notation, we have that

ξ̄1 = P−1/2
T∑

t=R

ft+τ |r′,β

(
R

t
B (R)H (R) +

t−R

t
BPHP

)
.

Adding and subtracting appropriately, we rewrite ξ̄1 as ξ̄1 =
∑8

i=1 ξ̄1.i where

ξ̄1.1 = FBP−1/2
T∑

t=R

R

t
H (R) , ξ̄1.2 = FBP−1/2

T∑
t=R

t−R

t
HP

ξ̄1.3 = FP−1/2
T∑

t=R

R

t

(
B (R)−B

)
H (R) , ξ̄1.4 = FP−1/2

T∑
t=R

t−R

t

(
BP −B

)
HP

ξ̄1.5 = P−1/2
T∑

t=R

R

t

(
ft+τ |r′,β − F

)
BH (R) , ξ̄1.6 = P−1/2

T∑
t=R

t−R

t

(
ft+τ |r′,β − F

)
BHP

ξ̄1.7 = P−1/2
T∑

t=R

R

t

(
ft+τ |r′,β − F

)(
B (R)−B

)
H (R) , ξ̄1.8 = P−1/2

T∑
t=R

t−R

t

(
ft+τ |r′,β − F

)(
BP −B

)
HP .

We can show that ξ̄1.3, ξ̄1.5 and ξ̄1.7 are op (1) by applying arguments similar to those in West (1996)

(cf. his Lemma A.4). Similar proofs show that ξ̄1.4, ξ̄1.6 and ξ̄1.8 are also op (1). Hence, we obtain

that ξ̄1 = ξ̄1.1 + ξ̄1.2 + op(1) and

P−1/2
T∑

t=R

ft+τ |r′(β̄t) = P−1/2
T∑

t=R

ft+τ |r′ + ξ̄1.1 + ξ̄1.2 + op(1). (6)

Subtracting (5) from (6) yields

S̃∗
P ≡ P−1/2

T∑
t=R

(
f∗
t+τ |r′(β̂

∗
t )− ft+τ |r′(β̄t)

)
= P−1/2

T∑
t=R

(
f∗
t+τ |r′ − ft+τ |r′

)
+
(
ξ∗1.1 − ξ̄1.1 − ξ̄1.2

)
+op(1),
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where

P−1/2
T∑

t=R

(
f∗
t+τ |r′ − ft+τ |r′

)
= S∗

1P ,

and ξ∗1.1 − ξ̄1.1 − ξ̄1.2 = FBS∗
2P , as we show next. In particular, using arguments similar to those of

Lemma A.5 of West (1996), we have that

ξ∗1.1 ≡ FBP−1/2
T∑

t=R

H∗(t) = FBaR,0P
−1/2

R∑
s=1+τ

h∗s + FBP−1/2
P−1∑
i=1

aR,ih
∗
R+i,

where aR,i ≡ (R+ i)−1 + . . . + (R+ P − 1)−1 for 0 ≤ i ≤ P − 1. Moreover, we can rewrite ξ̄1.1 as

follows,

ξ̄1.1 = FBP−1/2

(
T∑

t=R

t−1

)
︸ ︷︷ ︸

≡aR,0

RH (R)︸ ︷︷ ︸
≡h̄R

=
R

R− τ
FBP−1/2aR,0 (R− τ) h̄R = FBaR,0P

−1/2
R∑

s=1+τ

h̄R+op(1),

where the second equality holds by H (R) ≡ h̄R and the fact that aR,0 =
∑T

t=R t−1, and the third

equality follows from R/(R− τ) → 1. Lastly, we can rewrite

ξ̄1.2 = FBP−1/2

(
T∑

t=R

t−R

t

)
HP = FBP−1/2

(
1

R+ 1
+ ...+

P − 1

T

)
︸ ︷︷ ︸

=
∑P−1

i=1 aR,i

h̄P = FBP−1/2

(
P−1∑
i=1

aR,i

)
h̄P .

Hence,

ξ∗1.1 − ξ̄1.1 − ξ̄1.2 = FBaR,0P
−1/2

R∑
s=1+τ

(h∗s − h̄R) + FBP−1/2
P−1∑
i=1

aR,i(h
∗
R+i − h̄P ) ≡ FBS∗

2P .

Theorem 5.1. Theorem 5.1 follows from Polya’s theorem (e.g., Serfling, 1980 Chapter 1.5.3

page 18) if Ω−1/2S̃μ
P

d−→ N(0, 1) and Ω−1/2S̃∗
P

d∗−→ N(0, 1). Using the expansion in Lemma 4.1, we

get S̃μ
P

d−→ N(0,Ω) by Theorem 4.1 of West (1996). We are left to show that S̃∗
P

d∗−→ N(0,Ω). Re-

call that S̃∗
1P = P−1/2

∑T+τ
t=R+1(f

∗
t|r′ − E∗f∗

t|r′), S̃
∗
2P.1 = aR,0P

−1/2
∑R

s=1+τ (h
∗
s − E∗h∗s), and S̃∗

2P.2 =

P−1/2
∑T+τ

t=R+1 ct(h
∗
t − E∗h∗t ) with

cR+i =

{
aR,i for 1 ≤ i ≤ P − 1

0 if P ≤ i ≤ P − 1 + τ .

Using Lemma 5.1 and the results in Lemma A.4, we can write,

S̃∗
P = S̃∗

1P + FB
(
S̃∗
2P.1 + S̃∗

2P.2

)
+ o∗p(1)

= (S̃∗
1P + FBS̃∗

2P.2)︸ ︷︷ ︸
≡K∗

1

+FBS̃∗
2P.1︸ ︷︷ ︸

≡K∗
2

+o∗p(1).
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This alternative representation of S̃∗
P enable us to separate the whole bootstrap statistic into two

independent, zero bootstrap mean, bootstrap statistics K∗
1 and K∗

2. The independence of these two

terms can be seen from bootstrap algorithm in section 5. Recall that S̃∗
2P.1 is based on random indexes

I1, . . . , Ik1 whereas S̃
∗
1P and S̃∗

2P.2 are both based on random indexes J1, . . . , Jk2 , which are independent

from I1, . . . , Ik1 . Next we show K∗
1 and K∗

2 both converge to normal distribution with zero mean and

appropriate limiting variances. Without loss of generality, we let τ = 1 for the rest of the proof.

For K∗
2, we write

K∗
2 = FBaR,0

(
P

R− 1

)−1/2

(R− 1)−1/2
R∑

s=2

(h∗s − E∗h∗s)

where
(
V ar

(
(R− 1)−1/2

∑R
s=2 hs

))−1/2
(R− 1)−1/2

∑R
s=2(h

∗
s −E∗h∗s)

d∗−→ N(0, 1) by Corollary 3.1 of

Fitzenberger (1998). Using the result of V ar∗(S̃∗
2P.1) in Lemma A.4 (b), we can write

V ar∗ (K∗
2)

p−→ F 2B2Ω2.1.

where the definition of Ω2.1 can be found in Lemma 4.2. Hence, K∗
2 converge to normal distribution

with zero mean and variance F 2B2Ω2.1.

For K∗
1, we first simplify the notation by letting mi = R + 1 + (i − 1)l then write K∗

1 as sum of

independent block sums, i.e., K∗
1 = P 1/2k−1

2

∑k2
i=1 Ũ

∗
mi

where

Ũ∗
mi

= l−1
l∑

j=1

(
f̃∗
mi+(j−1)|r′ + FBcmi+(j−1)h̃

∗
mi+(j−1)

)

with f̃∗
mi+(j−1)|r′ = f∗

mi+(j−1)|r′ − E∗f∗
mi+(j−1)|r′ and h̃∗mi+(j−1) = h∗mi+(j−1) − E∗h∗mi+(j−1). Using

results in Lemma A.4, we can write

V ar∗(K∗
1)

p−→ Ω1 + F 2B2Ω2,2 + 2FBΩ12︸ ︷︷ ︸
≡Σ

where the definition of Ω1, Ω2,2, and Ω12 can be found in equation (1) and Lemma 4.2 respectively.

Then Σ−1/2K∗
1 =

∑k
i=1 Z̃mi where Z̃mi = Σ−1/2P−1/2lŨ∗

mi
. Noting that {Z̃∗

m1
, . . . , Z̃∗

mk2
} is a zero

mean, independent heterogeneous sequence which satisfies a CLT for independent heterogeneous se-

quence (see, 23.6 Lindeberg’s Theorem and 23.11 Liapunov’s Theorem in Davidson 1994). We verify

Liapunov’s condition using arguments similar to those in Goncalves and White (2002) (see equation

(A.5) on p. 1384).
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