The Summer Drop in Female Employment*

Brendan M. Price
Federal Reserve Board

Melanie Wasserman
UCLA

December 16, 2022

Abstract

We provide the first systematic account of summer declines in women’s labor market activity. From May to July, the employment-to-population ratio among prime-age US women declines by 1.1 percentage points, whereas male employment rises; women’s total hours worked fall by 11 percent, twice the decline among men. School closures for summer break—and corresponding lapses in implicit childcare—provide a unifying explanation for these patterns. The summer drop in female employment aligns with cross-state differences in the timing of school closures, is concentrated among mothers with young school-age children, and coincides with increased time spent engaging in childcare. Decomposing the gender gap in summer work interruptions across job types defined by sector and occupation, we find large contributions from both gender differences in job allocation and gender differences within job types in the propensity to exit employment over the summer. Women’s summer work interruptions contribute to gender gaps in pay: women’s weekly earnings decline by 3.3 percent over the summer months, about five times the decline among men.

Keywords: gender gap, seasonality, labor force participation, childcare, time use, school closure

JEL codes: J13, J16, J22, J24

*Email: brendan.m.price@frb.gov and melanie.wasserman@anderson.ucla.edu. Price gratefully acknowledges financial support from the W.E. Upjohn Institute’s Early Career Research Award program. We are grateful to Monica Rodriguez-Guevara and Matias Giacobasso for outstanding research assistance. We thank Martha Bailey, John Coglianese, Andrew Garin, Paola Giuliano, Claudia Goldin, Angela Kilby, Colleen Flaherty Manchester, Seth Murray, Christopher Nekarda, Romain Wacziarg, and participants at the 2021 Labor and Employment Relations Association meetings, the Federal Reserve Board, the University of Michigan Population Studies Center, the University of Illinois at Urbana-Champaign, the University of Chicago Inclusive Economy Lab, the 2022 Society of Labor Economists annual meeting, the 2022 CESifo Area Conference on Labor Economics, and the SITE Gender conference for helpful feedback. All errors are ours. The views expressed in this paper are those of the authors and do not necessarily represent the views or policies of the Board of Governors of the Federal Reserve System or its staff.
1 Introduction

Women and men differ markedly in the intensity and timing of their work. Relative to men, women work fewer hours per week, have more conventional work schedules, work less overtime, and experience more career interruptions.¹ These differences in labor supply along the extensive and intensive margins can explain a considerable portion of gender gaps in wages and earnings (Goldin, 2014; Blau and Kahn, 2017). But despite decades of research into gender disparities in labor supply, surprisingly little is known about gender gaps in the timing of work throughout the year. As a starting point, Figure 1 plots non–seasonally adjusted labor force participation rates for women and men, with June, July, and August shaded gray. A striking seasonal pattern emerges: summer after summer, women’s labor force participation drops sharply, whereas men’s participation remains comparatively stable.

This paper provides the first systematic account of summer declines in female employment. Using Current Population Survey data spanning 1989–2019, we first show that the employment-to-population ratio among prime-age US women falls by an average of 1.1 percentage points between

Figure 1: The summer drop in prime-age female labor force participation

![Graph showing seasonal decline in female labor force participation]

¹See, for example, Bertrand, Goldin, and Katz (2010); Bolotnyy and Emanuel (2022); Cortés and Pan (2019); Cubas, Juhn, and Silos (2022); Mas and Pallais (2017); Wasserman (2022); and Wiswall and Zafar (2018).
May and July, with equal contributions from increased unemployment and diminished participation. This yearly decline is economically meaningful, amounting to almost one third of the decline in the prime-age female employment rate during the Great Recession. In contrast, employment among prime-age men edges up slightly throughout summer. Declines in female work activity along the intensive margin reinforce those along the extensive margin: conditional on being employed, both women and men work fewer hours in the summer months (primarily reflecting summer vacations), but the drop is much larger for women. Combining both margins, women’s total hours worked contract by 11.2 percent from May to July, more than twice the decline among men.

School closures for summer break—and corresponding lapses in implicit childcare—provide a unifying explanation for these patterns. During the summer, parents use a patchwork of childcare arrangements, ranging from summer school and camps to informal care by relatives, to account for the six hours per weekday that children previously spent in school. Because women shoulder a disproportionate share of childcare—as evidenced by observed patterns of parental time use as well as gender differences in single parenthood—their labor supply is likely to be more heavily influenced by seasonal reductions in access to external childcare. In addition, preferences for complementary leisure may lead women to reduce employment while their children are on summer break.

To establish the central role of school closures, we show that the summer drop in female employment (1) is tightly synchronized with cross-state differences in the timing of schools’ summer breaks; (2) is concentrated among mothers, especially those with children old enough to attend school but young enough to require supervision when not in school; (3) is driven by an increase in non-participants who cite household or family duties as their main activity while out of the labor force; and (4) coincides with an increase in women’s time spent engaging in childcare. These regularities are absent or much less evident among men. We also provide evidence that complementary leisure can explain at most half of the summer drop in female employment.

The gender gap in summer employment is driven in equal parts by gender differences in sorting across sectors/occupations and by gender differences conditional on job type. The sorting takes two forms. First, women are disproportionately represented in educational services, where employment plummets each summer. Second, even within education, women are more likely to work in occupations that contract more sharply over the summer. Although women may choose to work in the education sector for many reasons, working mothers may find jobs in that sector
especially attractive because their work schedules are aligned with school calendars. Indeed, we show that women’s propensity to work in education peaks precisely when their children are of school-going age. Alongside these sorting effects, women in a given sector/occupation also exit employment each summer at rates higher than their male counterparts. Within education, female teachers, managers, and bus drivers all work less over the summer than men in the same occupation. Outside education, too, women exit employment each summer at higher rates than men.

School closures for summer break may contribute to gender gaps in pay by reducing women’s annual hours worked, curbing productivity, impeding human capital accumulation, or influencing job choices. We provide evidence for two such channels. First, we estimate that the summer drop in women’s employment and hours leads to a contemporaneous earnings loss of 3.3 percent, about five times the decline experienced by men. Second, among occupations represented in both the education and non-education sectors, we show that women systematically sort into education jobs. Since jobs in education typically pay less than comparable jobs outside of education, women may be trading off compensation for access to summer flexibility.

This paper contributes to the voluminous literature that studies gender disparities in labor market activity along both the extensive and intensive margins. Women’s differential demand for temporal flexibility in work schedules is one of the leading explanations for the remaining gender gaps in pay (Bolotnyy and Emanuel, 2022; Cortés and Pan, 2019; Cubas, Juhn, and Silos, 2022; Goldin, 2014; Wasserman, 2022; Wiswall and Zafar, 2018). Temporal demands are typically defined as the number and timing of hours worked per day or week, the predictability and location of those hours, and the extent to which the employer (versus the employee) has discretion over those hours (Blau and Winkler, 2018; Mas and Pallais, 2017; Wiswall and Zafar, 2018). Our paper establishes a new dimension of temporal flexibility—the timing of work throughout the year—and shows that childcare considerations prompt women both to gravitate to jobs that provide summer flexibility and to reduce their summer employment within a given job.

A closely related literature studies the labor market ramifications of school availability and timing. Expansions in the availability of schooling generally have positive effects on mothers’ labor supply (Gelbach, 2002; Cascio, 2009; Fitzpatrick, 2012). With regard to the timing of schooling, Duchini and Van Effenterre (2022) find gains in the continuity of maternal employment when France’s school week switched from having Wednesdays off to running Monday through Friday.
In a similar vein, Graves (2013) documents that year-round school schedules—which chop up the school year into smaller intervals of schooling—have negative effects on maternal employment. We show how a pervasive feature of educational systems—summer break—shapes the timing of women’s work throughout the year.

Our paper also complements the literature on the gendered labor market effects of the COVID-19 pandemic. Despite clear parallels, the school closures that occur each summer differ in important respects from those caused by the pandemic. While pandemic school closures were unanticipated, summer school closures are predictable events to which career choices have ample time to respond. In addition, whereas pandemic school closures were unprecedented events, school closures due to annual summer breaks are a longstanding fixture of the US educational system.

We also contribute to a body of research analyzing seasonal regularities both in the macroeconomy (Barsky and Miron, 1989; Miron and Beaulieu, 1996; Olivei and Tenreyro, 2007; Ngai and Tenreyro, 2014; Geremew and Gourio, 2018) and among individual workers and households (Moretti, 2000; Del Bono and Weber, 2008; Coglianese and Price, 2020). A recurring theme in these papers is that seasonal phenomena—though routinely regarded as statistical nuisances to be adjusted away—can have important real-world consequences that go unnoticed in adjusted or annualized data. Sounding the same theme, we demonstrate how seasonal lapses in publicly provided implicit childcare shape the timing and continuity of women’s labor market activity.

Section 2 describes our sample and regression specifications. Section 3 documents summer declines in female employment and hours. Section 4 develops a model of life-cycle labor supply with school closures for summer break. Section 5 provides evidence that these school closures are indeed central to the summer drop in female employment. Section 6 decomposes the gender gap in summer work interruptions between and within jobs. Section 7 shows impacts on gender gaps in pay. Section 8 concludes.

2See, among others, Albanesi and Kim (2021); Alon et al. (2021); Amuedo-Dorantes et al. (2022); Couch, Fairlie, and Xu (2022); Furman, Kearney, and Powell (2021); Garcia and Cowan (2022); Goldin (2022); Hansen, Sabia, and Schaller (2022); Heggeness (2020); Montenovo et al. (2022); Montes, Smith, and Leigh (2021); and Russell and Sun (2020).
2 Data and Methodology

We trace seasonal shifts in labor market activity using the Current Population Survey (CPS), with auxiliary analysis drawing on the American Time Use Survey (ATUS). We describe the CPS here, with further details in Appendix B.1. We defer discussion of the ATUS until later in the paper.

2.1 Sample construction

The CPS is a representative survey of US households conducted monthly by the US Census Bureau on behalf of the Bureau of Labor Statistics. From basic CPS extracts provided by the Integrated Public Use Microdata Series (IPUMS, Flood et al., 2021), we assemble a person × year-month panel of civilian individuals ages 25–49 spanning the years 1989–2019. We focus on prime-age adults to abstract from seasonality in labor supply linked to an individual’s own school enrollment and retirement decisions; we restrict to civilians because key labor market questions are not asked of members of the armed forces. Our analysis period begins in 1989, when the CPS first reports actual hours worked—allowing us to examine the intensive as well as the extensive margin of labor input—and ends on the eve of the COVID-19 pandemic, which upended typical seasonal patterns. Appendix Table A.1 reports summary statistics for our CPS sample.

CPS households are in-sample for four consecutive months, out-of-sample for eight months, and then back in-sample for a final four months. We use the cross-sectional dimension of the CPS to trace seasonality in labor market stocks, and we use the longitudinal dimension to track labor market flows both month-to-month and in back-to-back years (Rivera Drew, Flood, and Warren, 2014). For cross-sectional analyses, we use IPUMS sampling weights to ensure that our estimates are representative of the prime-age US population. For longitudinal analyses, we use iterative proportional fitting to construct sex-specific raked sampling weights that ensure consistency between labor market stocks and flows throughout our analysis period (Frazis et al., 2005). Following Madrian and Lefgren (2000), we validate cross-period individual linkages on the basis of sex, age, and race, and we exclude probable mismatches from our longitudinal analyses.

We observe household characteristics and labor market activity as of the survey reference week, which usually straddles the 12th day of the month. We partition individuals into those employed, those unemployed, and those not participating in the labor force. To account for
vacation/leave-taking during the summer months, we separately analyze whether individuals are employed and at work or employed but absent from work. Since education-sector contracts can span 9 or 12 months, tracking whether or not individuals are employed and at work also sidesteps the subtleties of how school staff report spells of non-work during the summer months. We also leverage CPS data on industry, occupation, and hours worked during the reference week; paid vs. unpaid leave for those absent from work; and reasons for non-participation or unemployment among those not employed.

We code individuals as “married” if their spouse is present, absent, or separated; we code single, divorced, and widowed individuals as “unmarried”. We define parental status based on the presence or absence in the household of one or more own children under age 18. This definition encompasses adopted children and step-children as well as biological children, but it excludes other children residing in the household (such as nieces and nephews) as well as biological children who have already moved out.

2.2 Main specifications

We employ simple regression specifications that recover the typical seasonal movements in a given time series. Because the variation of interest is cross-month, we aggregate our data to the year-month level for each population we consider. To trace seasonal shifts in labor market activity within a given population, we then estimate time-series specifications of the form

\[y_t = \alpha + \sum_{m \neq 5} \beta_m \cdot 1\{M(t) = m\} + f(t) + \text{weeks}_t + \varepsilon_t \]

(1)

where \(y_t \) is an outcome in year-month \(t \), \(M(t) \in \{1, 2, \ldots, 12\} \) returns the calendar month for period \(t \), \(f(t) \) controls for lower-frequency trends, and \(\text{weeks}_t \) is the number of weeks elapsed since the previous month’s reference week. Because our focus is on summer work interruptions, we normalize \(\beta_5 \) to zero, so that the coefficients of interest \(\beta_m \) capture average differences in an outcome relative to the month of May.

To account flexibly but parsimoniously for secular trends and business-cycle dynamics that might otherwise bias estimation of seasonal patterns, we specify \(f(t) \) as a linear spline in calendar time, with knots at roughly five-year intervals corresponding to turning points in the prime-age
employment and participation rates. Appendix B.2 details our knot-selection procedure, which we adapt from the algorithm used by Dupraz, Nakamura, and Steinsson (2019) to locate turning points in the unemployment rate. Our spline function flexibly captures low-frequency dynamics in our core outcomes of interest and, more generally, allows for non-parametric time trends in all of our specifications. We additionally control for the number of weeks elapsed between successive months’ reference weeks, since these time intervals are correlated with month length and holiday timing.

We estimate Equation (1) separately for each of the demographic groups we consider, since trend and cyclical movements in labor market outcomes vary strongly with sex and household structure (Juhn and Potter, 2006; Albanesi and Şahin, 2018; Bardóczy, 2022).

Equation (1) is designed for use with stock variables, such as employment rates. When examining labor market flows, we estimate the first-differenced analogue of Equation (1):

$$
\Delta y_t = \sum_{m \neq 5} \delta_m \cdot 1\{M(t) = m\} + \Delta f(t) + \Delta \text{weeks}_t + \Delta \varepsilon_t
$$

where Δy_t represents gross inflows, gross outflows, or net flows into employment as a share of the relevant population. In this formulation, the coefficients of interest δ_m capture the magnitude of flows between months $m - 1$ and m relative to April–May flows, and the differenced spline terms morph into indicator variables that allow for structural breaks in flow rates at the knot dates.

In both stock and flow specifications, we allow for heteroskedastic and autocorrelation-consistent standard errors (Newey and West, 1987) correlated up to a maximum lag of 26 months, a horizon suggested by the automatic lag selector of Newey and West (1994).³ When our interest lies in functions of the estimated coefficients (rather than $\hat{\beta}_m$ and $\hat{\delta}_m$ directly), we construct confidence intervals via the delta method.

3 Summer Declines in Female Employment and Hours

This section establishes that women’s labor market activity contracts each summer—along both extensive and intensive margins—in ways much less evident among men.

³To choose an appropriate lag structure, we ran our main specification separately by sex and by sex × household structure for several key outcome variables (employment, participation, hours worked, and gross employment flows). Across these specifications, the optimal bandwidth often equaled (and never exceeded) 27 months, corresponding to a maximal lag of 26 months. For consistency and simplicity, we impose this same bandwidth throughout the paper.
3.1 Women’s employment drops in the summer

We start with the extensive margin. Figure 2 plots coefficients $\hat{\beta}_m$ from estimating Equation (1) for three outcomes—employment, unemployment, and non-participation—separately by sex, with each measure expressed as a percentage of the corresponding population. As shown in the left panel, the prime-age female employment-to-population ratio (EPOP) declines by 1.1 percentage points (p.p.) between May and July, then rebounds strongly in the fall. Unemployment and non-participation contribute equally to the summer reduction in employment, with each rising 55 basis points from May to July.\footnote{While we pool all CPS survey years for our main analysis, in Appendix Figure A.1 we explore how the summer drop in female employment changes over our sample period. The summer drop appears relatively stable over time, with no obvious trend or cyclical variation in its magnitude. In addition, Appendix Figure A.2 shows that the female drop in summer employment appears consistently across age, education, and racial and ethnic groups.}

In contrast, prime-age male employment actually rises slightly over the summer months. The summer decline in female employment is sizable, equaling almost one third of the decline in prime-age female EPOP in the wake of the Great Recession.\footnote{Prime-age female EPOP fell 3.7 percentage points from the start of the Great Recession in December 2007 (72.4 percent) to its nadir in September 2011 (68.7 percent). Source: BLS Labor Force Statistics, series LNS12300062.}

Employment also contracts sharply with the onset of winter, especially for men. Because the main drivers of winter work interruptions—adverse weather, which triggers layoffs in male-
dominated sectors like construction, and a post-holiday retreat in consumer spending—are not operative in the summer months, we confine our analysis to summer work interruptions, though we continue to show year-round seasonal movements to place the summer in context.

3.2 The employment drop mostly stems from increased outflows

The summer drop in female employment could reflect weak inflows to employment, strong outflows from employment, or both. Along the inflow margin, some women might choose to delay labor market entry until the end of the summer or conduct only a limited job search during the summer months. Along the outflow margin, women may be subject to summer layoffs or choose to quit their jobs at the start of the summer. In Appendix C.1, we show how the flow coefficients $\hat{\delta}_m$ from estimating Equation (2) for gross per-capita inflows and for gross per-capita outflows can be transformed to express seasonal changes in employment rates as excess inflows minus excess outflows. Intuitively, employment rises between two consecutive months if monthly inflows exceed their annual average and/or if monthly outflows fall short of their annual average.

Figure 3 decomposes month-to-month changes in EPOP into these respective margins. The left panel shows that the summer drop in female employment is primarily a story of summer exits: elevated May–June and June–July outflows drive female employment rates down by a combined 0.9 p.p. from May to July, with depressed inflows contributing an additional 0.2 p.p. The summer decline reverses in the autumn months, when employment is buoyed by a wave of entries. Among men, the relative stability in employment stocks is echoed in gross employment flows, which hover near their annual averages throughout the summer months.

For many women, summer exits are a recurring phenomenon, rather than one-time occurrences. As shown in Appendix Figure A.3, the same women who exit employment at the start of a given summer tend to do so again in the summer of the following year.\footnote{Specifically, women who exit employment between the May and June reference weeks in a given year are 4.9 percentage points more likely to experience another such separation exactly 12 months later than would be expected based on separation rates 11 and 13 months after baseline. July separations are also unusually likely to be repeated in back-to-back years. See Appendix E.1 for details.}
3.3 Summer hours contract more for women than for men

The summer drop in female employment is also evident in total hours worked, an omnibus measure that encompasses shifts in labor market activity along both extensive and intensive margins. Table 1 reports the average May–July change in hours worked during the reference week among prime-age individuals observed in both months. As shown in row (1), women’s hours fall by an average of 3.0 per week (11.2 percent) from May to July. Men’s hours also decrease, but by a more modest 2.0 hours per week (5.2 percent).

Table 1 further decomposes the May–July decline in aggregate hours into extensive and intensive margin changes. For this decomposition, we define three groups: (i) those who are employed and at work with positive hours during the reference week (*present at work*); (ii) those who are unemployed or out of the labor force (*non-employed*); and (iii) those who are employed but absent from work for the entire reference week (*absent from work*). Row (2) quantifies the net change in hours along the extensive margin by tallying up positive and negative changes in hours among individuals who transition between non-employment and presence at work. Row (3) quantifies the intensive margin change in hours associated with transitions of employed workers.
Table 1: Decomposition of summer hours declines along the extensive and intensive margins

<table>
<thead>
<tr>
<th>Change in hours worked during reference week</th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>∆</td>
<td>%∆</td>
</tr>
<tr>
<td></td>
<td>∆</td>
<td>%∆</td>
</tr>
<tr>
<td>Total change from May to July:</td>
<td>-3.0</td>
<td>-11.2</td>
</tr>
<tr>
<td>(1)</td>
<td>-2.0</td>
<td>-5.2</td>
</tr>
<tr>
<td>Contribution from extensive margin:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Employed, at work ←→ not employed</td>
<td>-0.3</td>
<td>-1.3</td>
</tr>
<tr>
<td></td>
<td>-0.0</td>
<td>-0.1</td>
</tr>
<tr>
<td>Contribution from intensive margin:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Employed, at work ←→ employed, absent</td>
<td>-2.1</td>
<td>-7.9</td>
</tr>
<tr>
<td></td>
<td>-1.3</td>
<td>-3.4</td>
</tr>
<tr>
<td>(4) ∆ among those employed, at work</td>
<td>-0.5</td>
<td>-1.9</td>
</tr>
<tr>
<td></td>
<td>-0.6</td>
<td>-1.7</td>
</tr>
</tbody>
</table>

Notes: Row (1) reports the per capita change in hours from May to July among prime-age respondents observed in both months. Rows (2)–(4) decompose this change by tabulating net hours changes among workers in the indicated categories. “Employed, at work” are employed individuals with positive hours worked in the previous week; “employed, absent” are employed individuals who worked zero hours in the previous week; and “not employed” are those unemployed or out of the labor force. “∆ among those employed, at work” is the change in hours worked among those employed with positive hours in both the May and July reference weeks. Percent changes are relative to May.

between presence at work and absence from work. Row (4) quantifies the intensive margin change in hours from shifts in hours worked among those present at work in both May and July.

Consistent with the decline in women’s employment during the summer months, women experience a 1.3 percent reduction in hours along the extensive margin (row 2). This extensive margin change is reinforced by much larger reductions on the intensive margin, due primarily to increased absences from work (row 3). By examining seasonality in individuals’ stated reasons for being absent from work, we find that the increase in summer absences is concentrated among individuals taking vacation or personal days. A small portion of the intensive margin change stems from decreases in hours worked among those at work in both May and July (row 4). For men, the entirety of the 5.2 percent decline in summer hours comes via intensive margin changes, primarily in the form of increased absences from taking vacation.

In Figure 4 we further document that women experience prolonged summer work interruptions at higher rates than men. Let W denote being employed and at work during a given month’s reference week, and let NW denote being either non-employed or absent from work in that week. During the summer months, women and men experience similarly sharp upticks in the frequency of $W \rightarrow NW \rightarrow W$ spells, many of which are likely brief work interruptions lasting one or two weeks. But women experience a much larger uptick than men in the frequency of $W \rightarrow NW \rightarrow NW$
spells, which represent either repeated brief work interruptions or lengthier interruptions spanning reference weeks spaced four or five weeks apart. These results suggest that men’s intensive-margin changes in summer hours are almost entirely due to brief vacations, whereas women’s reflect both vacations and longer periods of non-work.

Summary. To recap, we show that prime-age women disproportionately experience declines in employment and labor force participation, elevated outflows from employment, and reductions in hours during the summer months. While men also experience a modest reduction in summer hours, their labor force participation and employment rates remain stable throughout the summer.

4 School Closures as a Unifying Explanation

Why does female employment fall over the summer? We argue that school closures for summer break—which disrupt implicitly provided childcare—provide a unifying explanation. Below we give an overview of summer childcare arrangements, then outline a model of labor supply that incorporates school closures and generates predictions as to employment and sectoral allocation.
4.1 School closures and summer childcare arrangements

Childcare needs change substantially during the summer months. During the school year, working parents of school-age children need to arrange childcare before and after school hours as well as during weekend and overnight shifts. When schools close for summer break, parents must additionally account for the six hours per weekday their children previously spent in school. Working parents use a panoply of summer care arrangements, the most common of which are organized care (such as summer camps and summer schools), care by relatives, and having children look after themselves (Capizzano, Adelman, and Stagner, 2002). Summer programs and camps generally do not extend the full 10 to 12 weeks of summer, nor do they cover the full work day, implying that a given family requires multiple types of care.

Over 40 percent of working parents with school-age children pay for childcare over the summer months (Capizzano, Adelman, and Stagner, 2002). The cost of summer programs varies by state and municipality; five weeks of summer programs for two children range from $1,400 in Wisconsin to $6,700 in Nevada (Novoa, 2018). In a survey conducted by the Center for American Progress, half of parents report that costs are a barrier to finding adequate summer care. An even higher percentage report that at least one parent in the household plans to make a job sacrifice—in the form of reduced hours worked, fewer days worked, use of unpaid time off, or leaving the labor force—to accommodate summer childcare needs (Novoa, 2019).

4.2 Conceptual framework

To frame our subsequent analysis, we describe a two-period model with career choices and summer childcare considerations that can rationalize the summer drop in female employment as a byproduct of the traditional school calendar. We formalize the model in Appendix D but note that other formulations (such as a model with frictional job search) would yield similar predictions.

Model setup. We consider a two-period partial equilibrium model in which individuals decide whether and in which sector to work at different points throughout the year and throughout their lives. Each period represents a distinct phase of the life cycle—pre-parenthood or parenthood—and is subdivided into two seasons, the summer and the school year. In each season, an individual may choose to (i) work in the education sector, (ii) work in the non-education sector, or (iii) not work,
by being either jobless or on unpaid leave from a job. We highlight two key assumptions.

First, we assume that jobs differ in the extent to which they reward continuous employment or (equivalently) penalize interrupted employment. Jobs in the education sector provide *summer flexibility*: education workers may choose whether or not to work during summer recess without affecting their earnings during the school year.7 By contrast, non-education jobs offer a continuity bonus for full-year employment.8 Together, these assumptions imply that the earnings penalty for summer work interruptions is smaller in the education sector. While the sectors differ in their treatment of *within-year continuity*, both sectors reward *career continuity*: individuals who stay in the same sector throughout their careers receive an earnings premium for doing so.9

Second, we allow the disutility of work to vary across seasons. In particular, some parents find it especially costly to work over the summer for either (or both) of two possible reasons. The first is *childcare constraints*: whereas schools provide implicit childcare during the school year, working parents must arrange costly childcare arrangements when schools are closed for the summer. The second is *complementary leisure*: parents may dislike working over the summer because they forego opportunities to spend time with their children. In keeping with observed patterns of parental time use (Handwerker and Mason, 2017), we assume that mothers shoulder a disproportionate share of these utility costs, since they are more likely to be single parents and, if married, are less likely to have a non-working spouse available to cover childcare. Within two-earner households, gender gaps in earnings and gender norms regarding the division of labor could lead women, rather than men, to curtail their summer employment if parental childcare is needed.

Model predictions. Our framework yields three intuitive predictions regarding how schools’ summer breaks shape individual employment patterns throughout the year and over the life cycle.

7Education-sector workers often have the option to keep working over the summer, at least part-time: a teacher might teach summer school or coach a sports team, while a bus driver might drive a limited number of summer routes. Education workers without such an option may instead seek temporary employment in another sector. In any event, these individuals’ summer choices are unlikely to impact the earnings they receive outside of summer.

8The continuity bonus is a stand-in for many real-world work configurations. For example, some employers (such as consulting or law firms) might only hire workers who commit to full-year employment, whereas others might offer a lower-paying career track for workers who seek fewer hours or weeks worked per year. See Podgursky (2011) for a discussion of the differences in the pecuniary and non-pecuniary attributes of education versus non-education jobs.

9This premium is meant to capture a range of real-world returns to sectoral or job tenure, such as specific human capital (Parent, 2000), backloaded salary scales (Lazear, 1981), or the vesting of pension benefits (Allen, Clark, and McDermed, 1993).
1. **Summer drop in female employment:** Summer childcare costs lead to a summer employment drop among women generally and among mothers in particular.

2. **Within-sector gender disparities:** Conditional on working in a given sector during the school year, women are less likely to work over the summer than are their male counterparts. These gender differences arise in both the education sector and the non-education sector.

3. **Job-sorting effects:** Summer childcare costs induce some individuals to sort into education jobs in pursuit of summer flexibility. Such sorting takes two distinct forms. First, there is *contemporaneous sorting*: some individuals work in non-education early in their careers, then switch to education jobs once they have school-age children. Second, there is *anticipatory sorting*: due to the returns to career continuity, women are more likely than men to sort into education jobs earlier in their careers in anticipation of future childcare considerations.

We explore these predictions empirically throughout the rest of the paper.

5 **Timing and Incidence of the Summer Drop**

In this section, we provide a constellation of evidence that the summer drop in female employment stems from school closures. First, we show that the timing of the summer drop lines up with cross-state differences in the timing of schools' summer breaks. Second, we show that mothers of school-age children are especially likely to experience summer declines in employment. Third, these declines are accompanied by an uptick in time spent on childcare during the summer months.

5.1 **The summer drop in female employment tracks school calendars**

We exploit cross-state variation in the timing of school closures to establish that the summer drop in female employment is inextricably tied to schools' closure for summer break.\(^{10}\) To determine when schools typically close in each state, we leverage information about how many 16-year-old CPS respondents report being enrolled in high school during the May, June, and July reference years.

\(^{10}\)Year-round schooling—in which schools replace the long summer vacation with a series of shorter breaks spread throughout the year—commands only a small share of the market. According to the National Center for Education Statistics, 4.1 percent of public schools used year-round calendars in 2011–2012, the latest school year for which this tabulation is available (Digest of Education Statistics, Table 234.12).
Figure 5: Cross-state synchronization of school closures with the summer drop in female EPOP

Notes: Left panel shows the percentage of 16-year-olds who report being enrolled in high school in the indicated month in states with early school closures (mostly in effect by the June reference week) or late school closures (mostly in effect only as of July). Right panel shows coefficients $\hat{\beta}_m$ from estimating Equation (1) for female EPOP separately in early and late closure states. Bars show 95 percent confidence intervals based on Newey-West standard errors.

weeks. For each state, we compute the average decline in school enrollment rates from May to July during our analysis period. We then classify as “early-closure states” those in which at least two thirds of the total May–July decline occurs between May and June; we classify as “late-closure states” those in which less than one third of the decline occurs between May and June.11

Applying this classification, the right panel of Figure 5 plots the summer drop in female employment, separately for respondents in early-closure versus late-closure states. In states where the large majority of K–12 schools have closed by the June reference week, female employment also starts its summer decline in June. By contrast, in states where most closures occur between the June and July reference weeks, female employment instead holds steady in June and starts its decline in July. In both cases, female employment rebounds by September, as schools have reopened nationwide by the September reference week. The tight synchronization between school summer breaks and depressed female employment points to school closures as the underlying cause.12

11Appendix Figure A.4 plots the distribution of this statistic across states. As shown in Appendix Figure A.5, most states in the American interior and the South Atlantic are classified as having early school closures, while much of the Northeast and Washington state have late school closures. A number of states in the Northeast, Midwest, and West Coast exhibit mixed patterns that defy neat classification.

12As shown in Appendix Figure A.6, male EPOP rises rapidly in the spring and stabilizes over the summer, but the inflection point comes a month earlier in early-closure states. The differential evolution of male employment in these states is partly accounted for by the timing of declining male employment in education-sector jobs. Outside of education, the differential May-to-June rise in male EPOP in late-closure states is largely concentrated in the
Figure 6: Seasonal shifts in female employment by household structure and parental status

5.2 The summer drop is largest for women with young school-age children

Our conceptual framework predicts that summer declines in employment will be most pronounced among women who experience lapses in externally provided childcare during the summer months. To test this prediction, the left panel of Figure 6 examines heterogeneity in women’s seasonal employment patterns by marital status interacted with the presence or absence of a child under 18 in the household. The presence of children—within both the unmarried and married groups—amplifies the summer drop in female employment. The decline is steepest, at 1.6 percentage points, among married mothers residing with their children.\(^{13}\)

Childcare needs are most likely to constrain summer employment when children are old enough to attend school from fall through spring, but too young to be left unattended for extended periods of time. Since childcare constraints are likely to be determined by a mother’s youngest child, the right panel of Figure 6 stratifies mothers (of any marital status) by the age of that child: children under 6 years old, who have yet to enter the K–12 education system; those aged 6–12, predominantly male transportation sector, which is more seasonally volatile in these states.\(^{13}\)

Notes: Coefficients \(\hat{\beta}_m\) from estimating Equation (1) for female EPOP separately by marital and parental status. Separated individuals are coded as married; parental status is defined in reference to an individual’s own children, including adoptees and step-children but excluding younger siblings and other children not one’s own. Bars show 95 percent confidence intervals based on Newey-West standard errors.
who attend school and require supervision when not in school; and those aged 13–17, who attend school and require less supervision when not in school. Mothers of children aged 6–12 experience the largest drop in employment, of 2.3 percentage points.\footnote{Appendix Figure A.8 shows analogous plots for men. No subgroup of men experiences a decline in summer employment. Men with children younger than age 13 experience a slight summer increase in employment.}

In Figure 7, we explore joint employment patterns among heterosexual married couples by estimating Equation (1) at the household level. During the summer months, the share of married households with both spouses employed falls by 1.3 percentage points, driven almost entirely by an increased share of households with only the husband employed. The shift from two-earner to husband-only households is especially pronounced among couples with young school-age children.\footnote{Appendix Figure A.9 examines the shares of households with both spouses, one spouse, or neither spouse employed and present at work. Alongside an increased share of households with only the husband at work, we see a summer increase in the share of households with neither spouse at work, consistent with couples going on vacation.}

5.3 Women spend more time on childcare in the summer months

Our assertion that childcare responsibilities account for women’s reduced summer employment is consistent with their self-reported summer activities. Beginning in 1994, the CPS reports each non-participant’s major activity while not in the labor force. As shown in the top panel of Figure 8,
both for prime-age women as a whole and for mothers of school-age children in particular, the increase in non-participation is almost fully accounted for by an increase in the share of women who report that they are “taking care of house or family”. In contrast, women without children in the household exhibit no change in their labor force participation during the summer months (and only a slight increase in their propensity to cite family duties in the event of non-participation).

Some of the summer increase in unemployment may also reflect women providing childcare while awaiting recall. As shown in the bottom panel of Figure 8, the uptick is driven—especially for mothers—by a jump in the share of respondents who are job losers on temporary layoff, meaning that they expect to be called back to work within the next six months (Katz and Meyer, 1990). Since temporary summer layoffs are concentrated in the education sector, they are likely to align closely with the span of time for which a laid-off worker’s children are on summer break.

To further probe the role of childcare in women’s time allocation during the summer months, we turn to the American Time Use Survey. As detailed in Appendix B.3, we compute total childcare

\[\text{Equation (1)} \]

\[\beta_7 \]

Notes: Coefficients \(\beta_7 \) (representing May–July changes) from estimating Equation (1) for the indicated outcomes in grouped data on women spanning 1994–2019. Subcategories of individuals not in the labor force denote respondents’ major activity during the reference week. Subcategories of unemployed individuals denote respondents’ reason for being unemployed. Bars show 95 percent confidence intervals based on Newey-West standard errors.
time by summing time spent on primary childcare (childcare as one’s main activity) and secondary childcare (childcare while doing other tasks). We decompose secondary childcare according to the primary tasks that accompany it: leisure activities, household activities, or other activities. Motivated by our earlier results, we focus on parents whose youngest child is aged 6–12.

Consistent with summer school closures prompting women to shift their time use from employment to childcare, the left panel of Figure 9 shows that mothers’ total time spent on childcare rises by 8.9 hours per week from May to July, with similar increases in June and August. The increase in total childcare time embeds a sharp rise in secondary childcare partly offset by a reduction in primary childcare.\(^{17}\) Consistent with the more modest drop in men’s hours worked associated with summer vacations (Table 1), the right panel of Figure 9 shows that fathers experience a smaller—and more fleeting—rise in total time spent on childcare, owing mainly to increased secondary childcare while engaged in leisure activities.

\(^{17}\)This pattern is consistent with prior research finding a summer decline in primary childcare involving educational activities, such as helping children with homework or driving them to school events (Handwerker and Mason, 2017).
5.4 Childcare constraints or complementary leisure?

The above patterns demonstrate tight linkage among school closures, declines in women’s summer employment, and disproportionate shifts in women’s summer time use toward childcare. These patterns are consistent with two non–mutually exclusive explanations, both driven by schools closing for summer break: (1) women facing childcare constraints/costs and (2) women engaging in complementary leisure. The first explanation posits that female employment declines during the summer months due to a rise in childcare costs, which are disproportionately borne by women. The second explanation contends that women take time off from work over the summer due to leisure preferences that are stronger when children are off from school.

We provide evidence that complementary leisure is unlikely to be the primary determinant of the decline in women’s summer employment. Recall that mothers of children aged 6–12 experience a 1.1 percentage point larger reduction in summer employment than mothers of children aged 13–17 (Figure 6). For complementary leisure to explain this difference, mothers’ preferences for summer leisure would have to be stronger for those with younger relative to older school-age children.

In Figure 10 we examine seasonality in vacation-related absences from work, a proxy for leisure. Mothers of children aged 6–12 and 13–17 exhibit nearly identical increases in vacation-taking during the summer months, suggesting that preferences for complementary leisure are similar across groups of mothers with school-age children.

If seasonal changes in utility from leisure are invariant to child age, then we can benchmark the contribution of complementary leisure to summer changes in female employment. Under the (strong) assumption that the entire decline in employment among mothers of children aged 13–17 is due to complementary leisure, the excess decline among mothers of children aged 6–12 can be attributed to childcare constraints. Using the estimates from Figure 6, only half of the decline in employment among mothers of children aged 6–12 can be explained by complementary leisure.\footnote{In Appendix Figure A.11 we provide similar estimates for labor force participation, by age of youngest child. By this measure, only one third of the summer decline in female participation is explained by complementary leisure.} Given that employment also declines for women without children in the household, we view this calculation as an upper bound on the potential contribution of complementary leisure.
Figure 10: Seasonal shifts in vacation-related absence from work by sex and parental status

Notes: Coefficients $\hat{\beta}_m$ from estimating Equation (1) for vacation-related absence from work during the reference week, separately by sex and parental status. The survey years are limited to 1994–2019 due to a break in the coding of reasons for absence. Bars show 95 percent confidence intervals based on Newey-West standard errors.

6 Job Sorting and Within-Job Gender Differences

Our conceptual framework in Section 4 generates predictions about the sectoral allocation and within-sector employment patterns of individuals for whom summer work is especially costly. First, we provide evidence that both sorting across jobs and within-job gender differences in the propensity to exit employment contribute to the summer drop in female employment. Next, we implement a formal decomposition of the gender gap in summer work interruptions into between- and within-job components and find large contributions from both. Notably, about half of the gap arises from within-job gender differences in the propensity to exit employment during the summer months.

6.1 Job sorting contributes to the summer drop

Women are disproportionately employed in the education sector—which accounts for 13.2 percent of female workers in May, compared with just 4.7 percent of male workers. Because employment in educational services contracts sharply in the summer months, whereas employment in other sectors expands (Appendix Figure A.12), gender differences in sectoral sorting may contribute to the summer drop in female employment. Even *within* education, women are more likely to work

19The summer drop in CPS education employment is echoed in the Current Employment Statistics (CES), which measures the number of employees paid during the pay period that straddles the reference week. The steeper drop in
Figure 11: Share of those employed who work in the education sector as a function of child age

![Graph showing share of employed in the education sector by child age]

Notes: Coefficients $\hat{\beta}_n$ (no child under 18) and $\hat{\beta}_a$ (youngest child of age a) from estimating Equation (3) in a sample of employed individuals aged 20–64 and observed during the non-summer months. The left panel reports raw shares employed in educational services; the right panel reports shares adjusted for a full set of one-year own-age effects and for a linear spline in calendar time, with the coefficient for parents with a newborn ($\hat{\beta}_0$) normalized to zero. Bars show 95 percent confidence intervals, based on standard errors two-way clustered on individual and year-month.

in occupations that shed more workers over the summer months. For example, the share of women employed in education who work as primary school teachers is nearly double that of men, while the reverse pattern holds for secondary school teachers. Primary school teachers are 1.7 p.p. more likely than secondary school teachers to exit employment from May to July.\(^{20}\)

These patterns are consistent with women sorting into jobs with summer flexibility due to summer lapses in school-provided childcare. But women might gravitate toward the education sector for a variety of reasons unrelated to the alignment of work with children’s school schedules: tastes for working in education, comparative advantage, historical path dependence in occupational choice, or norms. To test whether women’s propensity to work in education tracks childcare demands, we analyze the sorting of parents based on the age of their youngest child. In Figure 11, the left panel presents raw shares of employed men and women working in education, according to the age of their youngest child. The right panel presents regression-adjusted probabilities, which

CES education employment is consistent with the fact that some education workers report being employed year-round despite not being paid during summer recess.

\(^{20}\) Appendix Table A.2 reports female and male employment shares as well as summer separation hazards for select occupations within the education sector. We average the male and female hazard rates to neutralize the effect of differences in gender composition.
control for the age of the parent and for secular time trends.\footnote{For this exercise, we expand our sample to include ages 20–64 in order to better capture the tails of the child-age distribution. We drop the months of June, July, and August to avoid conflating differences in sectoral choice with differences in summer behavior. For each sex, we then estimate individual-level regressions of the form
\[
e_{ist} = \sum_{a=1}^{17} \beta_a \cdot 1\{a_{ist} = a\} + \beta_n n_{ist} + o_{ist} + f(t) + \varepsilon_{ist}
\] (3)
where \(e_{ist}\) is an indicator for working in education, \(a_{ist}\) is the age of individual \(i\)'s youngest child, \(n_{ist}\) is an indicator for having no child under 18 residing in the household, \(o_{ist}\) is a full set of own-age fixed effects, and \(f(t)\) is our standard linear spline. The coefficients of interest \(\beta_a\) capture working parents' propensity to work in education as a function of child age. We two-way cluster on individual and time period to allow for serial correlation and common shocks.}

Relative to mothers with a newborn, the share of working mothers employed in education first declines with child age, shoots up sharply as the youngest child reaches school age, peaks for mothers whose youngest child is 10 years old, and then declines as the youngest child progresses through adolescence. In contrast, men’s propensity to work in education is invariant to the age of their youngest child.

6.2 Within-job differences contribute to the summer drop

Our model predicts that women in particular jobs—within and outside of the education sector—will be less likely to work during the summer months than men in the same job. Within education, we observe gender differences even within narrowly defined occupations: as shown in Figure 12, female primary school teachers, secondary school teachers, managers in education, and school bus drivers are all more likely to exit employment each summer than their male counterparts.

Although both CPS and payroll data show sharp declines in education employment each summer, many CPS respondents who work in education report being employed but absent from work during the summer months (Appendix Figure A.12). As such, a potential concern with the comparisons in Figure 12 is that women and men who work in education may—conditional on their objective work status—differ in their likelihood of self-identifying as non-employed versus employed but absent from work. To rule out this concern, Appendix Figure A.13 presents an alternative version of Figure 12 that measures the hazard rate of transitioning from positive hours worked in the reference week to zero hours worked, without distinguishing between absence and non-employment. For all four occupations, the same qualitative picture emerges, and the gender gaps are generally even larger in absolute terms.

Outside of the education sector, women are also more likely than men to exit employment during the summer. The left panel of Figure 13 shows that in each summer month (relative to...
Figure 12: Hazard rate of exiting employment among workers in educational services

Notes: Coefficients $\hat{\beta}_m$ from estimating Equation (2) in a sample of respondents ages 25–49 with valid longitudinal links. The sample is restricted to individuals employed in educational services in the previous month, either in any occupation (left panel) or in the indicated occupation (right panel); the outcome is the percentage of these individuals who exited into non-employment in the current month. Bars show 95 percent confidence intervals based on Newey-West standard errors. In the right panel, coefficients for October–April are estimated but not shown.

Figure 13: Hazard rate of exiting employment among workers outside of educational services

Notes: Coefficients $\hat{\beta}_m$ from estimating Equation (2) in a sample of respondents ages 25–49 with valid longitudinal links. The sample is restricted to individuals employed outside of educational services in the previous month; the right panel further restricts the sample to respondents residing in states with early or later school closures, as classified in the text. The outcome is the percentage of these individuals who exited into non-employment in the current month. Bars show 95 percent confidence intervals based on Newey-West standard errors.

May), the hazard rate of exiting employment for workers outside of educational services is higher for women than for men. This gender difference is not simply incidental: the right panels show...
that women’s hazard rates of exiting non-education employment are tightly connected to school calendars. Using our earlier classification of early- and late-closure states, we observe that outside of the education sector, women experience an uptick in exits from employment precisely when schools in their state close for summer break.

6.3 Quantifying the roles of job-sorting and within-job effects

What share of the gender gap in summer work interruptions reflects gender differences in job sorting, and what share reflects gender differences conditional on job type? To answer this question, we develop a nested Oaxaca-Blinder decomposition that quantifies contributions from six distinct channels. We describe the decomposition verbally here and formalize it in Appendix C.

Consider the May–July change in women’s EPOP minus the same change among men. Men and women differ in their allocation across job types, which in turn differ in their propensity to generate net outflows from employment between May and July. Conditional on job allocation, men and women also differ in their propensity to exit employment. By the standard Oaxaca-Blinder logic, we can therefore decompose the gender gap in summer work interruptions as

\[
\text{overall gender gap} = \text{between jobs} + \text{within jobs}
\]

We define “jobs” on the basis of both sector and occupation. Within educational services, we distinguish five job types: (i) pre-K, kindergarten, and primary school teachers; (ii) secondary school teachers; (iii) postsecondary teachers; (iv) other staff in elementary and secondary schools; and (v) other staff in educational services. Outside of education, we distinguish 13 job types corresponding to “one-digit” sectors, such as construction, manufacturing, and retail trade. Using these job groupings, we can subdecompose the “between” component as

\[
\text{between jobs} = \text{sorting into education vs. non-education} \\
+ \text{sorting across jobs within education} \\
+ \text{sorting among non-education sectors} \\
+ \text{baseline differences in EPOP}
\]
The first of these terms captures gender differences in sorting into education, coupled with the fact that education contracts each summer relative to non-education. The second term captures gender differences in sorting among education jobs, which likewise differ in their seasonal patterns; for example, primary school teachers are more likely to exit employment each summer than are secondary school teachers. The third term captures gender differences in sorting in the rest of the labor market; for example, men are disproportionately employed in the construction sector, which expands every summer, relative to health care, which is comparatively stable through the summer months. The final term, a scaling component that adjusts for gender differences in baseline EPOP, is of little economic interest and is quantitatively small in practice.

The within-job component, in turn, can be expressed as a share-weighted average of the gender difference in employment seasonality observed within each job type. Summing these differences across education and non-education jobs, we obtain

\[\text{within jobs} = \text{within education jobs} + \text{within non-education jobs} \] (6)

Differences in the propensities of male and female secondary school teachers to exit employment during the summer months will be credited to the within-education term. Likewise, differences between male and female construction workers will be credited to the within-non-education term.

Figure 14 implements this decomposition, with the methodology extended to span the full calendar year.\(^{22}\) Consistent with the evidence presented in Section 6.1 and Section 6.2, each of the five components emphasized above contributes to the overall 1.2 percentage point gender gap in May–July employment changes. Notably, gender differences in job sorting and gender differences conditional on job type each explain about half of the gender gap in summer work interruptions. Sorting into education explains just over 30 percent of the overall change, while sorting across jobs within the education sector contributes an additional 7 percent. Sorting outside of education—such as between construction and health care—explains 16 percent of the total. Finally, gender differences within education jobs and gender differences within non-education jobs each account for 26 percent of the total.\(^{23}\)

\(^{22}\)Appendix Table A.3 presents accompanying point estimates and standard errors. Appendix Figure A.14 and Appendix Table A.4 present analogous results using an indicator variable for being employed and present at work.

\(^{23}\)The shares attributed to these five components sum to a little over 100 percent, owing to the small baseline EPOP scaling term acting in the opposite direction.
7 Implications for the Gender Pay Gap

We next provide evidence that summer drops in employment and hours reduce female earnings and consequently contribute to the gender pay gap. While we focus our discussion on the role of summer childcare constraints in generating declines in women’s earnings, we note that complementary leisure preferences would yield similar implications for pay.

7.1 Potential channels for summer childcare constraints to affect earnings

Summer childcare constraints may decrease women’s earnings through several channels. First, reductions in work activity along the extensive and intensive margins could directly reduce women’s earnings if they are not compensated for time off. Second, conditional on working, women might disproportionately seek out employment in the education sector, which offers summer flexibility but lower compensation; likewise, they may seek work in other sectors (such as retail) that permit

24Anticipation of these constraints could also dissuade some women from participating in the labor force if there are steep costs associated with summer childcare or substantial penalties associated with taking time off to care for one’s children. Using a longitudinal sample of young MBA professionals, Bertrand, Goldin, and Katz (2010) document a rise in female non-participation post-childbirth, particularly for family reasons. Incompatibility between childcare demands and the long and inflexible hours of many corporate jobs may explain the decline in participation.
intermittent employment but offer few opportunities for career advancement. Third, summer work interruptions could reduce future earnings by impeding human capital accumulation or signaling less commitment to the employer. We provide evidence on the first two channels below.

7.2 Reduced work contributes to gender gaps in pay

We quantify the direct effect on earnings using data on weekly earnings from the CPS Outgoing Rotation Groups. We assign non-employed individuals zero weekly earnings. For hourly workers, we compute weekly earnings as their hourly wage times their actual hours worked in the previous week. For salaried workers, we use their usual weekly earnings. To account for uncompensated time off among salaried workers, which spikes during the summer months (Appendix Figure A.15), we set weekly earnings equal to zero if the worker was absent without pay during the previous week.

Figure 15 plots seasonality in weekly earnings, by sex. Consistent with the decline in female employment and hours worked, women’s earnings fall sharply during the summer months: relative to May, the average drop over June/July/August is $18.29, or 3.3 percent. Notably, one third of this decline in women’s earnings stems from uncompensated time off among salaried workers. In contrast, men’s earnings decline only slightly over the summer months, by $6.18 or 0.7 percent.

Figure 15: Seasonal shifts in weekly earnings

Notes: Coefficients $\hat{\beta}_m$ from estimating Equation (1), separately by sex, for weekly earnings. The survey years are limited to 1994–2019 due the availability of information on unpaid absences from work. Bars show 95 percent confidence intervals based on Newey-West standard errors.
Gender disparities in summer earnings are also evident within the teaching profession. In Appendix E.2, we use data from the 1999–2000 Schools and Staffing Survey to show that male teachers earn, on average, $2,600 during the summer months from supplemental work inside and outside the school setting. Women, by contrast, earn less than half that amount.

7.3 Job sorting contributes to gender gaps in pay

Women’s disproportionate representation in the education sector, in part due to its provision of summer flexibility, may also contribute to gender gaps in pay. In Figure 16 we select 29 occupations present in both the education and non-education sectors, then compute the female share of each occupation, by sector. The female share is higher in the education sector for 25 out of 29 occupations, often by a wide margin. Using these same occupations, we then estimate the education-sector earnings premium or penalty in each occupation by estimating a Mincer regression on annual male earnings in the Annual Social and Economic Supplement to the March CPS. As shown in Figure 17, a large majority of occupations display an earnings penalty associated with working in the education sector, suggesting that women may be trading off compensation for summer flexibility.

Figure 16: Fraction female in occupations present both within and outside of educational services

Notes: Average female employment as a share of each occupation over 1989–2019, computed separately for the education and non-education sectors. The 29 listed occupations, drawn from a set of 73 two-digit Census occupations, are those for which average employment exceeds 20,000 in each of the two sectors.
Figure 17: Education-sector earnings penalties and premia within occupations present both within and outside of educational services

Notes: Coefficients on the interaction of occupation fixed effects with an education-sector dummy, from an individual-level regression of log annual earnings among men employed in the listed occupations (selected as described in Figure 16). The regression also controls for occupation main effects, educational attainment, a quadratic in age, and calendar year. Bars show 95 percent confidence intervals, with standard errors clustered at the household level.

8 Conclusion

This paper documents pervasive summer declines in women’s labor market activity. Extending prior research into the causes and consequences of interruptions to women’s careers, we show that the summer season brings with it significant reductions in female employment and a steep reduction in women’s total hours worked, especially along the intensive margin. In contrast, men’s employment increases slightly during the summer months, and their hours fall half as much.

We establish the central role of school closures in driving these patterns. The summer drop in female employment aligns with cross-state differences in the timing of summer breaks, is concentrated among women with school-age children, and coincides with an uptick in time spent on childcare. Decomposing the gender gap in summer work interruptions, we find substantial contributions from both gender differences in sorting across jobs with varying degrees of summer flexibility and gender differences within jobs in the propensity to exit employment over the summer. Summer work interruptions contribute to gender gaps in pay: women’s weekly earnings fall by 3.3 percent over the summer months, about five times the decline among men. Women also sort into
education-sector jobs that pay less annually than comparable jobs in other sectors.

The heavy imprint of school summer breaks on female labor force participation, employment, and earnings highlights the potential need for policy solutions to alleviate the remaining barriers to women’s equal participation in the labor market. Moreover, the ramifications of lengthy summer breaks extend beyond the labor market: education researchers have long documented summer learning loss—the erosion of students’ skills and knowledge—which is especially pronounced among low-income children. Policy options such as extending the school year, providing universal access to summer school, or increasing federal support for summer childcare could simultaneously address both labor market and educational impacts of summer school closures.

References

A Additional Figures and Tables

Appendix Figure A.1: Summer changes in employment-to-population ratios, 1989–2019

Notes: Plotted points show non–seasonally adjusted May–July changes in EPOP in our sample of prime-age individuals. Smoothed curves show three-year centered moving averages. Shading denotes recessions, as dated by the National Bureau of Economic Research.

Appendix Figure A.2: Demographic heterogeneity in the May–July change in EPOP

Notes: Coefficients $\hat{\beta}_7$ (representing May–July changes) from estimating Equation (1) separately by sex \times the indicated characteristic. See Appendix B.1 for details on our coding of race, ethnicity, and educational attainment. Bars show 95 percent confidence intervals based on Newey-West standard errors.
Appendix Figure A.3: Excess recurrence of work interruptions 12 months after an initial one

![Excess recurrence of work interruptions 12 months after an initial one](image)

Notes: Excess recurrence of work interruptions at annual intervals, as defined by Coglianese and Price (2020) and obtained by estimating $\hat{\rho}_{12} - \frac{1}{2}(\hat{\rho}_{11} + \hat{\rho}_{13})$ in Equation (21) using a sample of CPS respondents ages 25–49. Bars show 95 percent confidence intervals, with standard errors clustered at the household level. See Appendix E.1 for details.

Appendix Figure A.4: Cross-state distribution of the share of the total May–July drop in high school enrollment observed by the June reference week

![Cross-state distribution of the share of the total May–July drop in high school enrollment observed by the June reference week](image)

Notes: The statistic shown represents the share of the total May–July drop in high school enrollment among 16-year-old CPS respondents that occurs by the June CPS reference week. “Early-closure” states are those in which this statistic exceeds two thirds; “late-closure” states are those in which it falls short of one third. The remaining states are classified as “mixed-closure” states.
Appendix Figure A.5: Classification of US states by the timing of K–12 school closures

Notes: See notes to Appendix Figure A.4. Alaska and Hawaii (not shown) are classified as early-closure states.

Appendix Figure A.6: Cross-state synchronization of school closures with seasonal changes in male EPOP

Notes: Left panel shows the percentage of 16-year-olds who report being enrolled in high school in the indicated month in states with early school closures (mostly in effect by the June reference week) or late school closures (mostly in effect only as of July). Right panel shows coefficients $\hat{\beta}_m$ from estimating Equation (1) for male EPOP separately in early and late closure states. Bars show 95 percent confidence intervals based on Newey-West standard errors.
Appendix Figure A.7: Evolution of May–July employment gaps over the life cycle

Notes: Coefficients $\hat{\beta}_7$ (representing May–July changes) from estimating Equation (1) separately by sex \times one-year age bins. The shaded region denotes the age range used in our main estimation sample. Bars show 95 percent confidence intervals based on Newey-West standard errors.

Appendix Figure A.8: Seasonal patterns in male employment by household structure

Notes: Coefficients $\hat{\beta}_m$ from estimating Equation (1) for male EPOP separately by marital and parental status. Separated individuals are coded as married; parental status is defined in reference to an individual’s own children, including adoptees and step-children but excluding younger siblings and other children not one’s own. Bars show 95 percent confidence intervals based on Newey-West standard errors.
Appendix Figure A.9: Joint presence at work within married households

Notes: Coefficients \(\hat{\beta}_m \) from estimating Equation (1) at the household level among heterosexual married couples residing together and with no other prime-age adults. Households are weighted by the mean of the spouses’ sampling weights. Bars show 95 percent confidence intervals based on Newey-West standard errors.

Appendix Figure A.10: Decomposition of summer changes in male non-employment

Notes: Coefficients \(\hat{\beta}_7 \) (representing May–July changes) from estimating Equation (1) for the indicated outcomes in grouped data on men spanning 1994–2019. Subcategories of individuals not in the labor force denote respondents’ major activity during the reference week. Subcategories of unemployed individuals denote respondents’ reason for being unemployed. Bars show 95 percent confidence intervals based on Newey-West standard errors.
Appendix Figure A.11: Decomposition of summer changes in mothers’ non-employment by age of youngest child

Not in labor force (1994 on)
- Taking care of house or family
- In school
- Disabled, ill, or unable to work
- Retired
- Other or unknown

Unemployed (1994 on)
- Temporary layoff
- Permanent layoff
- Job leaver
- New entrant or reentrant

Difference rel. to May (p.p.)

Notes: See notes to Appendix Figure A.10.

Appendix Figure A.12: Seasonality of employment in educational services and other sectors

Difference rel. to May (log points)

Notes: Coefficients $\hat{\beta}_m$ from estimating Equation (1) for (i) CPS workers in educational services, (ii) the subset of these workers present at work, (iii) CES employment in educational services, and (iv) CES employment in other non-farm sectors. (iii) and (iv) use the BLS series CEU0000000001, CEU6561000001, CEU9092161101, and CEU9093161101, obtained via FRED. Bars show 95 percent confidence intervals based on Newey-West standard errors.
Appendix Figure A.13: Hazard rate of switching to zero hours worked among education workers

Notes: Coefficients \(\hat{\beta}_m \) from estimating Equation (2) in a sample of respondents ages 25–49 with valid longitudinal links. The sample is restricted to individuals who worked positive hours in educational services during the previous month’s reference week, either in any occupation (left panel) or in the indicated occupation (right panel); the outcome is the percentage of these individuals who worked zero hours in the current month’s reference week (whether non-employed or absent). Bars show 95 percent confidence intervals based on Newey-West standard errors. In the right panel, coefficients for October–April are estimated but not shown.

Appendix Figure A.14: Decomposition of female–male differences in the seasonality of presence at work

Notes: Additive decomposition of the gender gap in cumulative changes in an indicator variable for being employed at present at work between May and the indicated month. See text and Appendix C for details on the decomposition methodology. See Appendix Table A.4 for accompanying point estimates and standard errors.
Appendix Figure A.15: Seasonal shifts in paid and unpaid absences from work

Notes: Coefficients $\hat{\beta}_m$ from estimating Equation (1) for paid and unpaid absences from work during the reference week. The survey years are limited to 1994–2019 as leave types are not distinguished before 1994. Bars show 95 percent confidence intervals based on Newey-West standard errors.

Appendix Figure A.16: Validation of linear splines fitted to prime-age EPOP and LFPR

Notes: Series labeled “observed” plot the indicated measure net of estimated month effects and weeks-between-reference-weeks effects. Series labeled “fitted spline” plot the model predictions using only the linear spline, which places knots at select turning points in prime-age EPOP and LFPR. See Appendix B.2 for details.
Appendix Table A.1: Summary statistics for the CPS estimation sample

<table>
<thead>
<tr>
<th>Demographics</th>
<th>All prime-age</th>
<th>Parents (child 6–12)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Women (1)</td>
<td>Men (2)</td>
</tr>
<tr>
<td></td>
<td>Mothers (3)</td>
<td>Fathers (4)</td>
</tr>
<tr>
<td>Age</td>
<td>37.0</td>
<td>36.9</td>
</tr>
<tr>
<td></td>
<td>(7.1)</td>
<td>(7.1)</td>
</tr>
<tr>
<td>Married</td>
<td>65.6</td>
<td>63.3</td>
</tr>
<tr>
<td></td>
<td>(7.1)</td>
<td>(5.7)</td>
</tr>
<tr>
<td>Own child < 18 in household</td>
<td>59.6</td>
<td>49.0</td>
</tr>
<tr>
<td></td>
<td>(7.1)</td>
<td>(5.7)</td>
</tr>
<tr>
<td>Youngest < 6 years old</td>
<td>26.2</td>
<td>24.2</td>
</tr>
<tr>
<td></td>
<td>(5.7)</td>
<td>(5.5)</td>
</tr>
<tr>
<td>Youngest 6–12 years old</td>
<td>22.0</td>
<td>16.9</td>
</tr>
<tr>
<td></td>
<td>(5.7)</td>
<td>(5.5)</td>
</tr>
<tr>
<td>Youngest 13–17 years old</td>
<td>11.3</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>(5.7)</td>
<td>(5.5)</td>
</tr>
<tr>
<td>Labor market activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>71.9</td>
<td>86.8</td>
</tr>
<tr>
<td>At work during reference week</td>
<td>68.4</td>
<td>84.2</td>
</tr>
<tr>
<td>Absent during reference week</td>
<td>3.5</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>(5.7)</td>
<td>(5.5)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>3.8</td>
<td>4.6</td>
</tr>
<tr>
<td>Temporary layoff</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Other reason unemployed</td>
<td>3.4</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>(5.7)</td>
<td>(5.5)</td>
</tr>
<tr>
<td>Not in labor force</td>
<td>24.3</td>
<td>8.6</td>
</tr>
<tr>
<td>Not in labor force (1994 or later)</td>
<td>24.2</td>
<td>9.0</td>
</tr>
<tr>
<td>Taking care of house or family</td>
<td>16.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Other major activity</td>
<td>7.7</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>(5.7)</td>
<td>(5.5)</td>
</tr>
<tr>
<td>Hours worked in reference week</td>
<td>25.6</td>
<td>36.6</td>
</tr>
<tr>
<td></td>
<td>(20.0)</td>
<td>(19.4)</td>
</tr>
<tr>
<td></td>
<td>24.7</td>
<td>39.4</td>
</tr>
<tr>
<td></td>
<td>(19.5)</td>
<td>(18.2)</td>
</tr>
<tr>
<td>Observations</td>
<td>9,033,776</td>
<td>8,351,163</td>
</tr>
<tr>
<td></td>
<td>2,005,503</td>
<td>1,443,127</td>
</tr>
</tbody>
</table>

Notes: The sample consists of individuals aged 25–49. All statistics are sample means, with standard deviations reported in parentheses for non-binary variables. All statistics other than age and hours worked are expressed as percentages. Columns (3) and (4) restrict to parents whose youngest child residing in the household is aged 6–12. Observations are weighted to obtain representative estimates for the prime-age US population.
Appendix Table A.2: Gender differences in sectoral and occupational sorting

<table>
<thead>
<tr>
<th></th>
<th>% in sector/occ</th>
<th>(\Pr(E \rightarrow N))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Women</td>
<td>Men</td>
</tr>
<tr>
<td>Sector:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Education</td>
<td>13.5</td>
<td>4.8</td>
</tr>
<tr>
<td>(2) Non-education</td>
<td>86.5</td>
<td>95.2</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Occupation in education sector:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Primary school teacher</td>
<td>27.8</td>
<td>15.3</td>
</tr>
<tr>
<td>(4) Secondary school teacher</td>
<td>8.9</td>
<td>17.4</td>
</tr>
<tr>
<td>(5) Other non-college teacher</td>
<td>17.8</td>
<td>8.2</td>
</tr>
<tr>
<td>(6) College teacher</td>
<td>5.4</td>
<td>14.2</td>
</tr>
<tr>
<td>(7) Administrative staff</td>
<td>13.6</td>
<td>3.1</td>
</tr>
<tr>
<td>(8) Managers</td>
<td>7.9</td>
<td>11.3</td>
</tr>
<tr>
<td>(9) Food/trans./cleaning services</td>
<td>7.3</td>
<td>9.2</td>
</tr>
<tr>
<td>(10) Other</td>
<td>11.3</td>
<td>21.3</td>
</tr>
<tr>
<td>Total education</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Notes: Employment shares and separation hazards calculated among individuals employed as of May and observed in July of the same year. The last column reports the percentage of these individuals who were non-employed as of July (computed as the average of the female and male shares non-employed). All statistics are averaged over the 1989–2019 analysis period.
Appendix Table A.3: Decomposition of female–male differences in the seasonality of EPOP

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall change in gender gap</td>
<td>0.000</td>
<td>-0.716</td>
<td>-1.217</td>
<td>-1.071</td>
<td>-0.216</td>
<td>0.117</td>
<td>0.414</td>
<td>0.764</td>
<td>0.987</td>
<td>1.074</td>
<td>0.834</td>
<td>0.437</td>
<td>0.000</td>
</tr>
<tr>
<td>Sorting into the education sector</td>
<td>0.000</td>
<td>-0.269</td>
<td>-0.385</td>
<td>-0.319</td>
<td>-0.031</td>
<td>0.012</td>
<td>0.041</td>
<td>0.043</td>
<td>0.054</td>
<td>0.095</td>
<td>0.075</td>
<td>0.045</td>
<td>0.000</td>
</tr>
<tr>
<td>Sorting across non-education sectors</td>
<td>0.000</td>
<td>-0.114</td>
<td>-0.193</td>
<td>-0.229</td>
<td>-0.225</td>
<td>-0.168</td>
<td>-0.031</td>
<td>0.137</td>
<td>0.304</td>
<td>0.373</td>
<td>0.335</td>
<td>0.145</td>
<td>0.000</td>
</tr>
<tr>
<td>Sorting across education-sector jobs</td>
<td>0.000</td>
<td>-0.058</td>
<td>-0.089</td>
<td>-0.066</td>
<td>-0.028</td>
<td>-0.037</td>
<td>-0.034</td>
<td>-0.029</td>
<td>-0.008</td>
<td>-0.032</td>
<td>-0.029</td>
<td>-0.035</td>
<td>0.000</td>
</tr>
<tr>
<td>Within education-sector jobs</td>
<td>0.000</td>
<td>-0.186</td>
<td>-0.316</td>
<td>-0.227</td>
<td>-0.009</td>
<td>0.041</td>
<td>0.047</td>
<td>0.045</td>
<td>0.017</td>
<td>0.051</td>
<td>0.019</td>
<td>0.011</td>
<td>0.000</td>
</tr>
<tr>
<td>Within sectors other than education</td>
<td>0.000</td>
<td>-0.136</td>
<td>-0.312</td>
<td>-0.308</td>
<td>0.100</td>
<td>0.327</td>
<td>0.421</td>
<td>0.544</td>
<td>0.484</td>
<td>0.480</td>
<td>0.359</td>
<td>0.249</td>
<td>0.000</td>
</tr>
<tr>
<td>Baseline EPOP component</td>
<td>0.000</td>
<td>0.047</td>
<td>0.078</td>
<td>0.078</td>
<td>-0.023</td>
<td>-0.058</td>
<td>-0.030</td>
<td>0.022</td>
<td>0.135</td>
<td>0.107</td>
<td>0.076</td>
<td>0.022</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Notes: Point estimates and standard errors associated with the decomposition presented in Figure 14. Decomposition components are derived from a set of job-specific flow specifications (as in Equation (2)), estimated separately by sex. See Appendix C.2 for details on the decomposition procedure, which employs Oaxaca-Blinder techniques, and calculation of standard errors, which we obtain by stacking regression models in the manner of seemingly unrelated regression.
Appendix Table A.4: Decomposition of female–male differences in the seasonality of presence at work

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall change in gender gap</td>
<td>0.000</td>
<td>-2.353</td>
<td>-3.874</td>
<td>-2.930</td>
<td>-0.242</td>
<td>0.053</td>
<td>0.571</td>
<td>0.953</td>
<td>1.268</td>
<td>1.338</td>
<td>0.798</td>
<td>0.129</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.100)</td>
<td>(0.130)</td>
<td>(0.234)</td>
<td>(0.146)</td>
<td>(0.133)</td>
<td>(0.118)</td>
<td>(0.131)</td>
<td>(0.138)</td>
<td>(0.134)</td>
<td>(0.146)</td>
<td>(0.104)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Sorting into the education sector</td>
<td>0.000</td>
<td>-1.326</td>
<td>-2.209</td>
<td>-1.592</td>
<td>-0.029</td>
<td>0.004</td>
<td>0.057</td>
<td>0.063</td>
<td>-0.007</td>
<td>0.111</td>
<td>-0.072</td>
<td>-0.172</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.042)</td>
<td>(0.045)</td>
<td>(0.078)</td>
<td>(0.029)</td>
<td>(0.027)</td>
<td>(0.022)</td>
<td>(0.022)</td>
<td>(0.030)</td>
<td>(0.023)</td>
<td>(0.022)</td>
<td>(0.030)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Sorting across non-education sectors</td>
<td>0.000</td>
<td>-0.168</td>
<td>-0.224</td>
<td>-0.385</td>
<td>-0.218</td>
<td>-0.154</td>
<td>0.015</td>
<td>0.218</td>
<td>0.531</td>
<td>0.540</td>
<td>0.434</td>
<td>0.197</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.038)</td>
<td>(0.067)</td>
<td>(0.067)</td>
<td>(0.065)</td>
<td>(0.053)</td>
<td>(0.065)</td>
<td>(0.064)</td>
<td>(0.071)</td>
<td>(0.069)</td>
<td>(0.057)</td>
<td>(0.037)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Sorting across education-sector jobs</td>
<td>0.000</td>
<td>-0.327</td>
<td>-0.611</td>
<td>-0.352</td>
<td>-0.058</td>
<td>-0.084</td>
<td>-0.071</td>
<td>-0.057</td>
<td>0.016</td>
<td>-0.068</td>
<td>-0.054</td>
<td>-0.125</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.021)</td>
<td>(0.025)</td>
<td>(0.015)</td>
<td>(0.015)</td>
<td>(0.014)</td>
<td>(0.012)</td>
<td>(0.015)</td>
<td>(0.015)</td>
<td>(0.012)</td>
<td>(0.009)</td>
<td>(0.010)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Within education-sector jobs</td>
<td>0.000</td>
<td>-0.624</td>
<td>-0.962</td>
<td>-0.654</td>
<td>-0.007</td>
<td>0.025</td>
<td>0.048</td>
<td>0.044</td>
<td>0.002</td>
<td>0.050</td>
<td>0.002</td>
<td>-0.041</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.058)</td>
<td>(0.103)</td>
<td>(0.104)</td>
<td>(0.045)</td>
<td>(0.043)</td>
<td>(0.046)</td>
<td>(0.041)</td>
<td>(0.035)</td>
<td>(0.038)</td>
<td>(0.037)</td>
<td>(0.025)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Within sectors other than education</td>
<td>0.000</td>
<td>-0.363</td>
<td>-0.766</td>
<td>-0.700</td>
<td>0.025</td>
<td>0.278</td>
<td>0.564</td>
<td>0.683</td>
<td>0.533</td>
<td>0.575</td>
<td>0.352</td>
<td>0.152</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.107)</td>
<td>(0.145)</td>
<td>(0.158)</td>
<td>(0.148)</td>
<td>(0.115)</td>
<td>(0.115)</td>
<td>(0.137)</td>
<td>(0.139)</td>
<td>(0.122)</td>
<td>(0.135)</td>
<td>(0.100)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Baseline EPOP component</td>
<td>0.000</td>
<td>0.455</td>
<td>0.898</td>
<td>0.753</td>
<td>0.045</td>
<td>-0.015</td>
<td>-0.043</td>
<td>0.003</td>
<td>0.193</td>
<td>0.131</td>
<td>0.137</td>
<td>0.118</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.017)</td>
<td>(0.034)</td>
<td>(0.053)</td>
<td>(0.018)</td>
<td>(0.018)</td>
<td>(0.018)</td>
<td>(0.017)</td>
<td>(0.015)</td>
<td>(0.015)</td>
<td>(0.013)</td>
<td>(0.019)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

Notes: Point estimates and standard errors associated with the decomposition presented in Appendix Figure A.14. Decomposition components are derived from a set of job-specific flow specifications (as in Equation (2)), estimated separately by sex. See Appendix C.2 for details on the decomposition procedure, which employs Oaxaca-Blinder techniques, and calculation of standard errors, which we obtain by stacking regression models in the manner of seemingly unrelated regression.
B Details on Data Preparation

B.1 Current Population Survey

Our analysis draws primarily on basic monthly CPS extracts provided by IPUMS (Flood et al., 2021). We also use the Earner Study, administered to Outgoing Rotation Groups, and the Annual Social and Economic Supplement (ASEC), which accompanies the March CPS.

Sample restrictions. We limit our analysis to individuals aged 25–49. We further exclude members of the armed forces, who are not counted towards the official unemployment rate and for whom we do not observe key labor market variables (such as hours worked).

Longitudinal linkages. We link CPS observations across individuals over time and across individuals in the same household using the IPUMS variables cpsip and cpsid, respectively. We lack reliable linkages in mid-1995, owing to changes in the CPS household identifiers.

IPUMS cautions that cpsip sometimes yields erroneous links stemming from errors in data collection and advises researchers to validate individual linkages using age, sex, and race. For month-to-month analyses, we exclude individuals whose observed sex, race, or ethnicity differs between consecutive months, as well as those whose age differs by more than two years.¹ For the analysis of annually recurrent work interruptions in Appendix E.1, we exclude individuals for whom we observe inconsistencies in any of these variables at any point in their tenure in the survey.

Sampling weights. For cross-sectional analyses, we weight observations using the variables wtfinl (for analyses using basic monthly CPS extracts), earnwt (for analysis using weekly earnings), and asecwt (for analyses using the March ASEC). For longitudinal analyses, we weight observations using raked weights we compute ourselves. Although IPUMS provides a set of raked longitudinal weights that align gross labor market flows with stocks in the full set of adult CPS respondents, this equivalence holds only in the aggregate and breaks down once we restrict to prime-age individuals. Adapting replication files supplied by IPUMS, we construct raked weights via iterative proportional fitting, separately by sex and separately for each pair of consecutive months. Applying these raked weights to the set of longitudinally linkable individuals in our sample yields gross flows among employment, unemployment, and non-participation consistent with observed changes in the stock of individuals in each status in our full cross-sectional sample.

Demographic characteristics.

- **Marital status:** We code individuals as married or unmarried using the variable marst. We treat separated but non-divorced individuals as married.

- **Parental status:** We link children in each household to their parents—whether biological, adoptive, or step-parents—using the variables momloc, poploc, momloc2, and poploc2, which encompass both same- and opposite-sex couples. We take particular note of the age of each adult respondent’s youngest child in the household and bin parents into four groups: youngest child is under 6 years old, youngest child is 6–12 years old, youngest child is 13–17 years old, ¹Although gender and racial identity can evolve over time, changes in these variables in the brief periods between CPS survey rounds are more likely to reflect distinct respondents than changes in self-identification. We allow for slight inconsistencies in the reporting of age because, among observations exhibiting logically impossible combinations of lagged and current age, very slight discrepancies are disproportionately common, suggesting that in many cases the same individual is in fact being observed on both occasions.
or there is no child under 18 in the household. These age cutoffs mirror similar groupings used by IPUMS in its preparation of the ATUS data.

- **Educational attainment:** We classify individuals into four educational categories—“less than a high school degree”, “high school degree”, “some college”, and “college degree or higher”—using the variable `educ`, which is populated both before and after changes to the underlying CPS questions in 1992.

- **Race and ethnicity:** We classify individuals as “White non-Hispanic”, “Black non-Hispanic”, “Hispanic”, or “other non-Hispanic” using the variables `race` and `hispan`.

Sectors. We define the educational services sector using the variable `ind1990`, which bridges changes over time in the CPS industry codes. Educational services encompasses five industry codes:

- 842: Elementary and secondary schools
- 850: Colleges and universities
- 851: Vocational schools
- 852: Libraries
- 860: Educational services, n.e.c.

The decomposition in Figure 14 partitions non-education jobs into 13 sectors, delineated by capitalized headers in the IPUMS codebook. These are: “Agriculture, forestry, and fishing”; “Mining”; “Construction”; “Manufacturing”; “Transportation, communication, and utilities”; “Wholesale trade”; “Retail trade”; “Finance, insurance, and real estate”; “Business and repair services”; “Personal services”; “Entertainment and recreational services”; “Professional services” (excluding educational services); and “Public administration”.

Occupations. We use the variable `occ1990`, which harmonizes CPS occupation codes over time.

Reference week timing. The CPS reference week usually, but not always, straddles the 12th day of the month. We calculate the number of weeks elapsed between successive CPS reference weeks by following BLS guidance:

1. Define the reference week as the 7-day calendar week (Sunday to Saturday) that includes the 12th day of the month.
2. Shift the December reference week one week earlier if the calendar week that includes December 5 would otherwise be contained entirely within the month of December.
3. Shift the November reference week one week earlier if Thanksgiving falls during the week containing November 19.²

In our CPS sample, reference weeks are spaced four weeks apart in 63.7 percent of observations, five weeks apart in 33.9 percent of observations, and three or six weeks apart in the remainder.

²According to the BLS, the Census Bureau sometimes advances the November reference week by one week in other years as well, when it determines that there is not enough time to process the data before December interviews begin. We do not observe these judgmental deviations and thus do not adjust for them.
Annual Social and Economic Supplement (ASEC). For the analysis of the education sector earnings premium/penalty, we use the CPS Annual Social and Economic Supplement (ASEC), 1989–2019, which is administered in March of each year. The supplement includes respondents’ annual income derived from wage and salary income (variable incwage). We trim extremely low values of annual income, equivalent to earning less than the nadir of the minimum wage over our sample period, working 10 hours per week, and working 20 weeks per year. We use this income information alongside the respondent’s industry and occupation during the previous year to compute the regression-adjusted education-sector earnings premium or penalty in each occupation. The regression controls for educational attainment, a quadratic in age, and calendar-year fixed effects, in addition to occupation fixed effects and their interactions with the education sector.

B.2 Choosing knots for the linear spline

Our workhorse specifications in Equations (1) and (2) control for a linear spline in calendar time. To motivate this approach, suppose first that a given outcome variable (such as female EPOP) contains a linear time trend. Because our analysis period runs from January 1989 through December 2019, later months in the year tend to occur slightly later in calendar time, so that a na¨ıve regression on month dummies alone would be biased in proportion to the degree of secular drift. In addition, one might worry that turning points in the business cycle happen to occur at particular points in the calendar year. To address these potential biases, and to improve the precision of our estimates, we use a flexible spline function with knots at key turning points in the business cycle.

Our choice of knots is inspired by recent research on the cyclical properties of unemployment and labor force participation. Dupraz, Nakamura, and Steinsson (2019) note that turning points in the unemployment rate do not align perfectly with official business cycle dates from the National Bureau of Economic Research, while Cajner, Coglianese, and Montes (2021) and Hobijn and Şahin (2021) document the sluggish response of the labor force participation rate (LFPR) to cyclical conditions, especially in the wake of the Great Recession. Motivated by these observations, we adopt a data-driven approach that locates knots tailored to prime-age EPOP and LFPR:

1. We start with an algorithm from Dupraz, Nakamura, and Steinsson (2019, hereafter DNS) that locates turning points in the US unemployment rate by searching for local extrema while ignoring small fluctuations within a tolerance band. Adapting their replication code, we locate turning points in seasonally adjusted EPOP for ages 25–54, as published by the Bureau of Labor Statistics (Labor Force Statistics series LNS12300060). The DNS algorithm deals with the possibility of “ties” by selecting the earliest peak or trough within a given expansion or contraction. We depart slightly from their procedure by instead taking the midpoint between the earliest and latest candidate inflection points (rounding up to the nearest month when needed).

2. The DNS procedure yields six turning points that fall within our 1989–2019 analysis period: January 1990, February 1993, April 2000, October 2003, January 2007, and June 2010. We discard the January 1990 turning point since it falls near the edge of our period.

3. Although a linear spline with these knots can effectively capture broad movements in prime-age EPOP, it imposes a linear trend for the last decade of our analysis period, and it misses an important turning point in prime-age participation during the mid-2010s. To remedy these defects, we rerun the DNS algorithm using the seasonally adjusted LFPR for ages 25–54 (Labor Force Statistics series LNS11300060) and retain the turning point in October 2014.

We end up with six knots: February 1993, April 2000, October 2003, January 2007, June 2010, and October 2014. Besides corresponding to notable inflection points in prime-age labor market
conditions, these knots are situated roughly five years apart and hence serve as a flexible means to model trend movements in other outcomes we examine as well.

To verify that our chosen knots satisfy their intended function, Appendix Figure A.16 plots our fitted splines from estimation of Equation (1) for prime-age EPOP and LFPR, separately by sex, against the observed time series, net of our estimated month effects and weeks-between-reference-weeks effects. The close correspondence between these series indicates that the model residuals are systematically modest through the ups and downs of the business cycle.

B.3 American Time Use Survey (ATUS)

Launched in 2003, the ATUS (another BLS product) surveys a random subset of outgoing CPS respondents a few months after their final CPS interview (Hamermesh, Frazis, and Stewart, 2005; Guryan, Hurst, and Kearney, 2008). One randomly selected adult member of the household is asked to provide a detailed, minute-by-minute accounting of their activities throughout the previous day. Paralleling our CPS sample, we assemble IPUMS ATUS data on individuals ages 25–49 over the period 2004–2019 (Hofferth, Flood, and Sobek, 2020); we discard 2003 because of issues with data completeness. We exclude respondents with incomplete time diaries, so that time allocations sum to 24 hours. We multiply minutes spent on each activity by $\frac{7}{60}$, so that our measures are expressed in terms of hours per week.

We examine both narrow and broad measures of time allocated to childcare activities. First, we follow Guryan, Hurst, and Kearney (2008) in constructing a measure of “primary” childcare, defined as intervals of time in which the respondent was mainly engaged in childcare activities. Second, we compute “total” childcare by adding in the ATUS measure of secondary childcare, defined as time spent engaging in childcare concurrently with some other primary activity. We exploit the granular structure of the ATUS to decompose secondary childcare according to whether it accompanies household activities, leisure activities, or other activities.

The ATUS diary dates are distributed evenly throughout the year, but weekends are deliberately oversampled. We employ IPUMS sampling weights that adjust for both cross-household and day-to-day differences in sampling probability, so that our estimates are representative of prime-age adults’ time allocation throughout the week as well as the year.

Primary childcare time. Our definition of primary childcare time follows Guryan, Hurst, and Kearney (2008), who write:

"We define “total child care” as the sum of four primary time use components. “Basic” child care is time spent on the basic needs of children, including breast-feeding, rocking a child to sleep, general feeding, changing diapers, providing medical care (either directly or indirectly), grooming, and so on. However, time spent preparing a child’s meal is included in general “meal preparation,” a component of nonmarket production. “Educational” child care is time spent reading to children, teaching children, helping children with homework, attending meetings at a child’s school, and similar activities. “Recreational” child care involves playing games with children, playing outdoors with children, attending a child’s sporting event or dance recital, going to the zoo with children, and taking walks with children. “Travel” child care is any travel related to any of the three other categories of child care. For example, driving a child to school, to a doctor, or to dance practice are all included in “travel” child care."

We identify the ATUS activities matching these verbal descriptions and use them to construct measures of basic, educational, recreational, and travel childcare, then sum these measures to
obtain primary childcare.

Secondary childcare time. Alongside each person × primary activity observation, the ATUS reports whether the respondent had a child under age 13 in their care while engaging in that activity. Following our definition of parental status, we use a measure of secondary childcare that counts only instances when the child under an adult’s care is the parent’s own child. We define total childcare as the sum of primary and secondary childcare. To shed additional light on seasonal changes in time use, we also partition time spent on secondary childcare according to the primary activity it accompanies:

1. Household activities, a category reported directly in the ATUS;
2. Leisure activities, which we define as the union of the ATUS categories “socializing, relaxing, and leisure”, “sports, exercise, and recreation”, and “traveling”; and
3. All other activities.

Data quality and completeness. We exclude observations with data quality flags (which note, for example, cases in which a respondent intentionally provided a wrong answer or could not remember their activities), as well as those with incomplete time diaries (cases in which total time usage sums to less than 24 hours).

C Decomposition Details

In this appendix, we derive two key decompositions used in the main text. First, we show how seasonal changes in employment rates can be decomposed into contributions from inflows versus outflows (Figure 3). Second, we show how gender differences in employment seasonality can be decomposed into gender differences in job sorting as well as gender differences conditional on job type (Figure 14).

Notation. We begin by introducing notation common to both decompositions.

- Let \(g \in \{\varphi \text{ (female)}, \sigma' \text{ (male)}\} \) index gender.
- Let \(m \in \{0, 1, \ldots, 12\} \) index calendar months relative to the base month 0, which we take to be May. We sometimes use \(m = 12 \) as an alternative label for the base month.
- Let \(e_{gm} \) denote group \(g \)’s EPOP in month \(m \). Let \(f_{gm} \) and \(s_{gm} \) denote the shares of each population finding or separating from employment in month \(m \), and let \(n_{gm} \equiv f_{gm} - s_{gm} \). We refer to these shares as inflows, outflows, and net inflows, respectively. Since our empirical implementation implicitly averages across years after netting out low-frequency time trends, monthly changes in \((e, f, s, n) \) represent the typical seasonal pattern in each outcome.
For any variable x, we define the operators

\[
\Delta_g(x) \equiv x_\varphi - x_\sigma \quad \text{(gender gap)}
\]
\[
\Delta_m(x) \equiv x_m - x_{m-1} \quad \text{(month-to-month change)}
\]
\[
\mathbb{E}_g(x) \equiv \frac{1}{2}(x_\varphi + x_\sigma) \quad \text{(cross-gender average)}
\]
\[
\mathbb{E}_y(x) \equiv \frac{1}{12} \sum_{m=1}^{12} x_m \quad \text{(within-year average)}
\]

These operators may be nested: for example, $\Delta_g(\Delta_m(x)) = (x_\varphi_m - x_\sigma_{m-1}) - (x_\sigma_m - x_\sigma_{m-1})$.

C.1 Stock-flow decomposition

We begin with the decomposition shown in Figure 3, which expresses changes in each group’s EPOP between months $m-1$ and m as the sum of an inflow component and an outflow component.

Stock-flow identity. Since month-to-month changes in EPOP equal net inflows, we have the law of motion

\[
e_{gm} = e_{g,m-1} + f_{gm} - s_{gm} \quad \text{for } m > 0 \tag{7}
\]

By recursive substitution, $e_{g12} = e_{g0} + \sum_{m=1}^{12}(f_{gm} - s_{gm})$. But since e_{gm} represents a seasonal cycle, we know that $e_{g0} = e_{g12}$: net of low-frequency trends and idiosyncratic shocks, EPOP evolves from May through April and then returns to its May level. It follows that

\[
\sum_{m=1}^{12} f_{gm} = \sum_{m=1}^{12} s_{gm} \tag{8}
\]

Intuitively, EPOP can remain stable over a 12-month cycle only if total inflows exactly counterbalance total outflows over that period.

Dividing Equation (8) by 12 yields $\mathbb{E}_y(f_g) = \mathbb{E}_y(s_g)$: average inflows equal average outflows over the seasonal cycle. Adding and subtracting these (equal) terms to Equation (7), we obtain

\[
\Delta_m(e_{gm}) \equiv \underbrace{(f_{gm} - \mathbb{E}_y(f_g))}_{\text{excess inflows}} - \underbrace{(s_{gm} - \mathbb{E}_y(s_g))}_{\text{excess outflows}} \tag{9}
\]

Intuitively, EPOP rises between two consecutive months to the extent that inflows exceed their average monthly rate and/or outflows fall short of their average monthly rate.

Estimation. Equation (9) is estimable. Let β_{gm}^f and β_{gm}^s denote the parameters of interest in our inflow and outflow specification, respectively. Start with inflows. Since these parameters represent differences in flows between month m and the base month, we have $f_{gm} = f_{g0} + \beta_{gm}^f$, so that

\[
\mathbb{E}_y(f_g) = \frac{1}{12} \sum_{m=1}^{12} f_{gm} = \frac{1}{12} \sum_{m=1}^{12} (f_{g0} + \beta_{gm}^f) = f_{g0} + \mathbb{E}_y(\beta_{f}^g) \tag{10}
\]

We can then rewrite excess inflows as

\[
f_{gm} - \mathbb{E}_y(f_g) = (f_{g0} + \beta_{gm}^f) - (f_{g0} + \mathbb{E}_y(\beta_{f}^g)) = \beta_{gm}^f - \mathbb{E}_y(\beta_{f}^g) \tag{11}
\]
Rewriting excess outflows in the same fashion, and replacing each parameter with its empirical estimate, we obtain our stock-flow decomposition:

\[
\Delta_m(e_{gm}) \equiv (\hat{\beta}_gm - \mathbb{E}_y(\hat{\beta}_g)) - (\hat{\beta}_gm - \mathbb{E}_y(\hat{\beta}_g))
\] (12)

Although Figure 3 is expressed in terms of one-month changes, one could cumulate these decomposition terms across months to estimate the contributions of inflows versus outflows to changes in EPOP between any pair of months \(m\) and \(m'\). In addition, confidence intervals can be readily constructed via the delta method.

C.2 Job decomposition

We now turn to the decomposition shown in Figure 14. Our goal is to decompose \(\Delta_g(\Delta_m(e_g))\), which represents gender differences in the evolution of EPOP between months \(m - 1\) and \(m\), into a set of terms representing gender differences in sorting across job types and gender differences in seasonality conditional on job type. Having done so, we can then cumulate the decomposition terms across months to characterize gender differences over the full seasonal cycle.

Step 1: Partition employment into jobs and sectors. We partition employment into a finite set \(J\) of job types, indexed by \(j\). These jobs are nested within \(S\) sectors, so that \(J = J_A \cup J_B \ldots \cup J_S\). In our empirical implementation, we label sector \(A\) as “educational services” and distinguish five job types within that sector, whereas we treat all other sectors as singletons, each comprised of a single undifferentiated job type. For the moment, however, we keep the notation general, allowing for the possibility that sectors \(B, \ldots, S\) are each subdivided into multiple job types.

Step 2: Express seasonal changes in EPOP in shift-share form. To leverage standard decomposition techniques, we first write \(\Delta_m(e_g)\) as a share-weighted average of job-level flow rates. Let \(e_{gjm}\) denote the share of population \(g\) employed in job \(j\) in month \(m\), so that \(e_{gm} = \sum_{j \in J} e_{gjm}\). Let \(f_{gjm}\) denote the share of population \(g\) moving from non-employment into job \(j\), and let \(s_{gjm}\) denote the share moving from job \(j\) into non-employment. We define \(n_{gjm} = f_{gjm} - s_{gjm}\) as net inflows from non-employment into job \(j\). Note that these flows exclude job-to-job transitions, which cancel out in the aggregate and hence leave no imprint on overall EPOP.

Next, we express seasonal changes in EPOP as the sum of net inflows across job types:

\[
\Delta_m(e_g) = n_{gm} = \sum_{j \in J} n_{gjm}
\] (13)

As in the aggregate case, these seasonal movements must cumulate to zero over a full 12-month cycle, so that \(\mathbb{E}_y(f_{gj}) = \mathbb{E}_y(s_{gj})\) and hence \(\mathbb{E}_y(n_{gj}) = 0\). Subtracting this expression, we obtain

\[
\Delta_m(e_g) = \sum_{j \in J} (n_{gjm} - \mathbb{E}_y(n_{gj}))
\] (14)

Now, multiply and divide the summand by \(e_{gj0}\), the share of population \(g\) employed in job \(j\) in the base month:

\[
\Delta_m(e_g) = \sum_{j \in J} e_{gj0} \left(\frac{n_{gjm}}{e_{gj0}} - \frac{\mathbb{E}_y(n_{gj})}{e_{gj0}} \right) = \sum_{j \in J} e_{gj0} \lambda_{gjm},
\] (15)
where the newly defined term λ_{gjm} represents group g’s excess net flows from non-employment into job j in month m as a share of baseline employment.

Step 3: Decompose the gender gap between and within job types. With the shift-share formulation in hand, we can express the gender gap in employment seasonality as

$$\Delta_g(\Delta_m(e_g)) = \Delta_g \left(\sum_{j \in J} e_{gj0} \lambda_{gjm} \right)$$

(16)

We are now in the realm of familiar decomposition techniques. Using the standard trick of adding and subtracting cross-terms, we can decompose the righthand side as

$$\Delta_g \left(\sum_{j \in J} e_{gj0} \lambda_{gjm} \right) = \sum_{j \in J} \Delta_g(e_{gj0}) \mathbb{E}_g(\lambda_{gjm}) + \sum_{j \in J} \sum_{j' \in J} \mathbb{E}_g(e_{gj0}) \Delta_g(\lambda_{gjm})$$

(17)

Intuitively, the *between-job* component captures gender differences in seasonality arising from differences in the share of each group employed at various jobs that differ in their propensity to generate employment inflows/outflows throughout the year. The *within-job* component captures gender differences in employment flows conditional on a given allocation across job types.

Step 4: Separate the job-sorting and baseline EPOP effects. Whereas the within-job component in Equation (17) has a straightforward economic interpretation, the between-job component does not, as it confounds gender differences in sorting with gender differences in employment rates. With a little more algebra, however, we can separate these effects:

$$\sum_{j \in J} \Delta_g(e_{gj0}) \mathbb{E}_g(\lambda_{gjm}) = \sum_{j \in J} \Delta_g(e_{gj0}) \mathbb{E}_g(e_{g0}) \mathbb{E}_g(\lambda_{gjm}) + \Delta_g(e_{g0}) \sum_{j \in J} \mathbb{E}_g(e_{gj0}) \mathbb{E}_g(\lambda_{gjm})$$

(18)

The *job-sorting effect* captures the extent to which—conditional on being employed—male and female workers differ in their propensity to work in jobs with different seasonal patterns. The *baseline EPOP effect* is a scaling term that accounts for gender differences in employment rates: because male EPOP exceeds female EPOP, a seasonal shift that has the same proportional impact on male and female employment rates will have a bigger absolute impact on men than on women. By splitting out the baseline EPOP effect (which we regard as a nuisance term), we can better assess how job sorting contributes to the gender gap in summer work interruptions.

Step 5: Distinguish sorting across sectors from sorting within sectors. We can further unpack the job-sorting effect to distinguish sectoral sorting from sorting across jobs within a given sector. To condense notation:

- Let $\phi_{gj} \equiv \frac{e_{gj0}}{e_{g0}}$ denote group g’s employment in job j as a fraction of its total employment.

4As with any Oaxaca-Blinder-style decomposition, we face the question of which gender to use as the base group in each term. Equation (17) uses cross-gender averages in each term to avoid making an arbitrary choice.
Let $\tilde{\lambda}_{jm} \equiv \mathbb{E}_g(e_{g0}) \mathbb{E}_g(\lambda_{gjm})$ denote excess net flows in job j, averaged across genders and then scaled by aggregate EPOP.

Define analogous terms for sector k: $\Phi_gk \equiv \sum_{j \in J_k} \phi_gj$ and $\Lambda_km \equiv \sum_{j \in J_k} \mathbb{E}_g\left(\frac{\phi_gj}{\Phi_gk}\right) \tilde{\lambda}_{jm}$.

Let $\Phi_gA \equiv \sum_{k \neq A} \Phi_gk$ and $\Lambda_AM \equiv \sum_{k \neq A} \mathbb{E}_g\left(\frac{\phi_gk}{\Phi_gA}\right) \Lambda_km$ describe non-education as a whole.

The job-sorting effect then becomes simply $\sum_j \Delta_g(\phi_gj) \tilde{\lambda}_{jm}$, which we subdecompose as follows:

$$\sum_{j \in J} \Delta_g(\phi_gj) \tilde{\lambda}_{jm} = \Delta_g\left(\Phi_gA \Lambda_AM + \Phi_gA \Lambda_AM\right) + \Delta_g\left(\sum_{k \neq A} \frac{\Phi_gk}{\Phi_gA} (\Lambda_km - \Lambda_AM)\right)$$

Intuitively:

- The first term captures gender differences in sorting into educational services, “priced” using average seasonal patterns in the education sector versus non-education as a whole.
- The second term captures gender differences in sorting into sectors with different seasonal patterns (such as construction versus health care), conditional on sorting into non-education.
- The third term captures gender differences in sorting across jobs within educational services (such as primary school teaching versus secondary school teaching). The final term captures analogous sorting patterns across jobs within each non-education sector.

In our empirical implementation, we treat each non-education sector as consisting of a single undifferentiated job, so this final term vanishes.

Step 6: Isolate gender differences within jobs in each sector. In a similar (but simpler) fashion, we can also subdecompose the within-job component from Equation (17) into two terms:

$$\sum_{j \in J} \mathbb{E}_g(e_{gj0}) \Delta_g(\lambda_{gjm}) = \sum_{j \in J_A} \mathbb{E}_g(e_{gj0}) \Delta_g(\lambda_{gjm}) + \sum_{k \neq A} \sum_{j \in J_k} \mathbb{E}_g(e_{gj0}) \Delta_g(\lambda_{gjm})$$

Note that, in Equation (20), the second subcomponent can be viewed as a single entity representing the non-education sector as a whole, or one could separately examine within-job contributions from the construction sector, manufacturing sector, retail sector, and so on. By the same token, one could go further and examine the contribution made by gender differences within specific jobs, such as differences among primary school teachers or differences among lawyers.

Empirical implementation. Equations (17) and (18) give us a three-way decomposition of the gender gap in employment seasonality into within-job, job-sorting, and baseline EPOP components. Equations (18) to (20) unpack these further into as many as seven components. To implement these decompositions, we need (1) a partition J of industry-occupation pairings into job types, (2)
estimates of the share of women/men employed in aggregate and in each job, and (3) estimates of
the λ terms capturing net excess flows.

We start by distinguishing 14 “one-digit” sectors, such as construction, manufacturing, and retail
trade, on the basis of the variable \texttt{ind1990}. These follow headers used by IPUMS in its codebook
entries for that variable, except that we split “professional and business services” into “educational
services” and “other professional and business services”. Next, we partition jobs in the educational
services sector into five categories:

- Pre-K, kindergarten, and primary school teachers
- Secondary school teachers
- Postsecondary teachers
- Other staff in elementary and secondary schools
- Other staff in educational services

We code all other sectors as singletons: e.g., we recognize only a single manufacturing “job”. Doing
so eliminates the term representing sorting across jobs within non-education sectors, so we are left
with the six-way decomposition presented in Figure 14.

We then compute baseline employment shares as simple average employment shares across
all May observations in our analysis period. We estimate the λ terms by estimating our standard
seasonal specification on grouped data, with one observation per sex \times job type.

Confidence intervals. Each term in our decomposition combines parameter estimates from a
subset of 2 \times J notionally independent regressions. To construct confidence intervals for each
decomposition term, we stack a copy of the group-level data for each constituent regression, then
estimate a single stacked model in the manner of seemingly unrelated regression. We cluster errors
at the year \times month level, so that the error terms can be arbitrarily correlated across outcomes
in each stack. Using the stacked covariance matrix, we can then construct confidence intervals via
the delta method.\footnote{As a check on the logic of this procedure, we compared the confidence intervals for the overall gender gap in
EPOP obtained via this method with those obtained from a direct regression using aggregate flows. These match up
to the slight numerical errors one would expect from repeated application of the delta method.}

D A Model of Labor Supply with Summer School Closures

We use a two-period model to illustrate how schools’ summer closures—which are likely to differen-
tially affect women’s labor supply—may contribute to gender differences in employment over
both the seasonal cycle and the life cycle. In our model, period 1 represents a typical year during
the early part of an agent’s working life, before she (or he) has children. Period 2 represents years
later in life when children are old enough to attend school but young enough to require supervision
during the summer months, when schools are not in session. We abstract from other portions of
the life cycle so as to focus attention on the most pertinent theoretical issues.

We proceed in four steps. In step I, we develop a static variant of the model that is isomorphic
to period 2 in the full dynamic model. In step II, we determine which of the available strategies
are “admissible” in the sense of being optimal for some possible parameter values. In step III,
we perform comparative statics showing how optimal behavior responds to parents’ increased disutility
from working during the summer months. We interpret these comparative statics as a reduced-
form representation of comparisons between agents who differ in parental status, child age, the
availability of spousal childcare, or access to market-provided childcare. In step IV, we extend the static model into a two-period dynamic model and derive additional implications about life-cycle career choices.

Step I: static setup

We consider a single agent deciding whether and in which sector to work at different points throughout the year. Here and throughout, the model is in partial equilibrium in the sense that we do not endogenize employment opportunities or wages. We also abstract from fertility decisions and take the presence or absence of children as exogenous.

Time periods. Each period, or “year”, is divided into two subperiods, which we call “seasons” and index by \(\tau \in \{A, B\} \). Season \(A \), which we sometimes call “winter” for concreteness, represents the school year, whereas season \(B \) represents the summer.\(^6\) Since our initial focus is on a single year, we omit year subscripts until step IV.

Work status. The agent chooses whether to supply one unit of labor and, if so, in which sector to work. In a given season, the agent’s work status (“job”) is \(j \in \{E, N, O\} \), where:

- \(E \) represents being employed (and at work) in the education sector;
- \(N \) represents being employed (and at work) in the non-education sector; and
- \(O \) represents being non-employed (or employed but absent), which we call the outside sector.

We abstract from both job search and leave-taking. First, we assume that the agent can obtain a job in either sector at zero cost and at any time. As a result, there is no meaningful distinction between unemployment and non-participation in our model.\(^7\) Second, as detailed below, there is also no meaningful distinction between unemployment and vacation. Under these assumptions, the single status \(O \) suffices to capture all forms of non-work during a given season.

Strategies. A strategy, denoted by \(s \), is an ordered pair \((j_A, j_B)\) representing the agent’s employment status during both winter and summer. Since each status can assume three different values, there are nine available strategies. For brevity, we often write \(s = EE \) or \(s = NO \) in place of \(s = (E, E) \) or \(s = (N, O) \). We write \(s^*(\theta) \) for the optimal strategy under parameter vector \(\theta \), which we define explicitly below.

Utility. Utility \(u(s|\theta) \) from choosing strategy \(s \) given parameters \(\theta \) equals earnings net of distaste for labor and childcare costs, with each component summed across seasons.

Earnings. Let \(w_{j|\tau} \) denote base wages from working in job \(j \) during season \(\tau \). Let \(b_j \) be a bonus awarded for working year-round in job \(j \). We make four assumptions about earnings in each sector:

\(^6\)Although (for simplicity) we model the two seasons as being of equal length, it would be straightforward to modify the model to allow for “winter” to be three times as long as “summer”.

\(^7\)Although unemployment is a first-order consideration at high frequencies, it is of secondary importance relative to participation decisions over longer time horizons. We focus on a single year for purposes of exposition, but we interpret our model as capturing employment dynamics over longer periods each lasting for at least several years.
Assumption A1. \(w_{OA} = w_{OB} = 0 \).

Non-work yields zero earnings. Intuitively, this assumption abstracts from unemployment benefits, cash welfare, or any other forms of non-labor income.

Assumption A2. \(w_{EA} > w_{EB} > 0 \).

Education jobs pay less over the summer. This assumption captures the idea that the demand for education workers is greater during the school year but remains positive during the summer.\(^8\)

Assumption A3. \(w_{NA} = w_{NB} \equiv w_N > 0 \).

Non-education jobs pay the same base wage in each season. This assumption abstracts from seasonal differences in labor demand in sectors like agriculture, construction, and retail.

Assumption A4. \(b_N > 0, b_E = b_O = 0 \).

Non-education jobs offer a continuity bonus, whereas education jobs do not. This assumption captures the idea that, in many industries, full-year employment offers premium earnings (or, equivalently, interrupted employment carries an earnings penalty).

These assumptions amount to a parsimonious way of modeling the key idea that education-sector jobs are more flexible than non-education jobs, especially as pertains to summer work. Although many of our theoretical results would obtain under weaker assumptions, the sharp parameter restrictions assumed above simplify the exposition and streamline the proofs.

Distaste for labor and childcare costs. Working in sector \(j \) in season \(\tau \) entails flow disutility \(\Phi_{j\tau} \equiv \phi_j + D_{j\tau}(\Delta^R + \Delta^C) \), where \(D_{j\tau} \equiv 1\{j \neq O, \tau = B\} \) is an indicator for summer employment and \(\Delta^R \) and \(\Delta^C \) capture preferences over the seasonal timing of work related to recreational opportunities or childcare considerations, respectively.\(^9\) We assume:

Assumption B1. \(\phi_O = 0 \).

We normalize the intrinsic distaste for non-employment to zero. With this normalization, \(\phi_E \) and \(\phi_N \) absorb any overall labor-leisure preferences—including those related to childcare considerations operative year-round—as well as relative preferences for one sector over the other.

Assumption B2. \(\Delta^R > 0 \).

All else equal, agents have at least a slight preference for taking leisure in summer relative to winter, reflecting the greater recreational opportunities available in the summer. This assumption simplifies the exposition by ruling out the possibility that some agents choose to work exclusively during summer, but it is immaterial for the model’s main results.

Assumption B3. \(\Delta^C \geq 0 \).

When the inequality is strict, parental considerations make summer employment especially costly for two possible reasons, which are not mutually exclusive. The first is childcare constraints:

\(^8\)School-year employment and summer employment need not involve the same employer: for example, some education workers may work for different school districts in different seasons, or switch between K–12 and college.

\(^9\)Our notation \(\phi_j \) abstracts from the possibility that some jobs are more pleasant or unpleasant to perform at certain times of year: for example, workers may particularly dislike working in outdoor occupations in the winter. Relaxing this assumption would have no bearing on our comparative statics.
whereas schools provide implicit childcare during the school year, working parents must arrange costly childcare arrangements when schools are closed for the summer. The second is complementary leisure: parents who choose to work over the summer may forego utility they would otherwise have received from spending time with their children. Although ΔC admits both interpretations, for ease of exposition we refer to ΔC as a measure of childcare costs.

As with our assumptions about the earnings process, our main results would continue to obtain under weaker assumptions about leisure preferences and childcare costs.

Parameters. Let $\theta \equiv (w_{EA}, w_{EB}, w_N, b_N, \phi_E, \phi_N, \Delta R, \Delta C)$ be a vector of exogenous parameters. Apart from the restrictions made above, these parameters may vary freely across agents with different productivities, comparative advantages, leisure preferences, and household structures.

We will be chiefly interested in comparative statics with respect to ΔC, which captures summer childcare costs. Since these exercises hold recreational preferences ΔR fixed, we define $\Delta \equiv \Delta R + \Delta C$ and focus on comparative statics with respect to Δ.

Step II: admissible strategies

We can write out the utility associated with each available strategy as follows:

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Earnings</th>
<th>Distaste</th>
<th>Childcare</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>OO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EO</td>
<td>w_{EA}</td>
<td>ϕ_E</td>
<td>0</td>
<td>$w_{EA} - \phi_E$</td>
</tr>
<tr>
<td>OE</td>
<td>w_{EB}</td>
<td>ϕ_E</td>
<td>Δ</td>
<td>$w_{EB} - \phi_E - \Delta$</td>
</tr>
<tr>
<td>EE</td>
<td>$w_{EA} + w_{EB}$</td>
<td>$2\phi_E$</td>
<td>Δ</td>
<td>$w_{EA} + w_{EB} - 2\phi_E - \Delta$</td>
</tr>
<tr>
<td>NO</td>
<td>w_N</td>
<td>ϕ_N</td>
<td>0</td>
<td>$w_N - \phi_N$</td>
</tr>
<tr>
<td>ON</td>
<td>w_N</td>
<td>ϕ_N</td>
<td>Δ</td>
<td>$w_N - \phi_N - \Delta$</td>
</tr>
<tr>
<td>NN</td>
<td>$2w_N + b_N$</td>
<td>$2\phi_N$</td>
<td>Δ</td>
<td>$2w_N + b_N - 2\phi_N - \Delta$</td>
</tr>
<tr>
<td>EN</td>
<td>$w_{EA} + w_N$</td>
<td>$\phi_E + \phi_N$</td>
<td>Δ</td>
<td>$w_{EA} + w_N - \phi_E - \phi_N - \Delta$</td>
</tr>
<tr>
<td>NE</td>
<td>$w_N + w_{EB}$</td>
<td>$\phi_N + \phi_E$</td>
<td>Δ</td>
<td>$w_{EB} + w_N - \phi_E - \phi_N - \Delta$</td>
</tr>
</tbody>
</table>

By inspection, three strategies can be immediately ruled out:

- OE is strictly dominated by EO since $w_{EA} > w_{EB}$ and $\Delta > 0$.
- ON is strictly dominated by NO since $\Delta > 0$.
- NE is strictly dominated by EN since $w_{EA} > w_{EB}$.

The dominated strategies represent work configurations that, though of course present to some extent in the real world, are of secondary importance for our analysis. Each of the remaining six strategies is admissible in the sense of being the optimal strategy for some parameter vector θ.

Lemma 1. For each strategy $s_k \in \{OO, EO, EE, NO, NN, EN\}$, there exists a parameter vector θ_k such that $s^*(\theta_k) = s_k$. Moreover, θ_k can be chosen such that s_k is the unique optimum.

Proof: Fix an initial vector θ_0 satisfying the assumptions stated previously. By taking certain parameter values to the limit while keeping all other parameters fixed, we can make each of the six strategies uniquely optimal:

10 Pure summer employment (OE or ON) is common among young adults but less common among prime-age adults. Although employment rates among prime-age men are significantly higher in summer than in winter, seasonal patterns among men primarily track the timing of adverse winter weather rather than the timing of summer recess.
The surviving strategies mirror employment patterns that commonly arise in the data.

Step III: comparative statics

We now consider comparative statics as Δ increases to $\Delta' = \Delta + \delta$, with all other parameters held fixed. To illustrate how summer childcare costs may shape employment decisions, we show how agents pursuing each admissible strategy under the original parameter vector θ reoptimize under the new vector θ'. Under each admissible strategy, utility changes as follows:

| Strategy (s) | $u(s|\theta)$ | $u(s|\theta') - u(s|\theta)$ |
|---------------|---------------|-----------------------------|
| OO | 0 | 0 |
| EO | $w_{EA} - \phi_E$ | 0 |
| EE | $w_{EA} + w_{EB} - 2\phi_E - \Delta$ | $-\delta$ |
| NO | $w_N - \phi_N$ | 0 |
| NN | $2w_N + b_N - 2\phi_N - \Delta$ | $-\delta$ |
| EN | $w_{EA} + w_N - \phi_E - \phi_N - \Delta$ | $-\delta$ |

To streamline the exposition, we ignore the edge cases where the agent is initially indifferent between two or more strategies.

Theorem 1. Consider agents whose optimal strategy $s^*(\theta)$ is initially inframarginal, so that for $\delta \approx 0$ the new optimum $s^*(\theta')$ coincides with the original one. For sufficiently large values of δ, we observe the following changes in optimal behavior:

(i) If $s^*(\theta) \in \{OO, EO, NO\}$, then $s^*(\theta') = s^*(\theta)$.

(ii) If $s^*(\theta) \in \{EE, EN\}$, then $s^*(\theta') = EO$.

(iii) If $s^*(\theta) = NN$, then each of $s^*(\theta') \in \{NO, EO, OO\}$ is potentially optimal.

Proof: Strategies EE, NN, and EN are clearly suboptimal when δ is large, so it suffices to consider whether OO, EO, or NO yields the most utility in each case.

(i) If $s^*(\theta) \in \{OO, EO, NO\}$, then $u(s^*(\theta)|\theta') = u(s^*(\theta)|\theta)$, whereas $u(s|\theta') \leq u(s|\theta)$ for all $s \neq s^*(\theta)$. It follows that $s^*(\theta)$ remains optimal under θ'.

(ii) By revealed preference, it must be that $w_{EA} - \phi_E > 0$, since otherwise the agent could have profitably deviated to strategy OE (in the case $s^*(\theta) = EE$) or ON (if $s^*(\theta) = EN$). Therefore $u(EO|\theta') > u(OO|\theta')$, so that EO is preferred to OO.

Likewise, it must be that $w_{EA} - \phi_E > w_N - \phi_N$ (in the case $s^*(\theta) = EE$) or $w_{EA} - \phi_E > w_N + b_N - \phi_N$ (in the case $s^* = EN$), since otherwise the agent could have profitably deviated to NE or NN, respectively. Thus EO is preferred to NO, as well.
(iii) Let θ_{-b} denote all parameters other than b. For any given choice of θ_{-b}, there exists some threshold b^* such that strategy NN is optimal for $b > b^*$. Fix such a value of b, then take $\delta \to \infty$, so that strategy NN is dominated and the new optimum is either NO, EO, or OO. Among these possibilities:

- NO dominates if $w_N - \phi_N > \max\{0, w_{EA} - \phi_E\}$.
- EO dominates if $w_{EA} - \phi_E > \max\{0, w_N - \phi_N\}$.
- OO dominates if $0 > \max\{w_{EA} - \phi_E, w_N - \phi_N\}$.

Intuitively, as summer childcare costs rise, (i) agents who counterfactually would have been non-employed over the summer are simply reinforced in their original decisions; (ii) agents whose primary job is in education choose to engage in home production over the summer; and (iii) agents who would otherwise have worked year-round outside of education either take the summer off, switch to education, or withdraw from employment altogether.

Step IV: two-period model

Now suppose the agent lives for two periods, indexed by $t \in \{1, 2\}$, each with seasons $\tau \in \{A, B\}$, and chooses a strategy s_t in each period to maximize lifetime utility.

Parameter vectors. Let $\theta \equiv (\theta_1, \theta_2, \beta)$, where θ_t is defined as in the static model and β is defined below. Let $\theta_{-\Delta,t}$ be a list of all period t parameters other than Δ. We maintain assumptions $A1$–$A4$ and $B1$–$B3$ from the static model and additionally assume:

Assumption C1. $\theta_{-\Delta,1} \equiv \theta_{-\Delta,2}, \quad \Delta_2 \geq \Delta_1$.

The earnings and distaste parameters are identical across periods, so we omit t subscripts. Agents’ distaste for summer employment potentially rises in period 2, when they may have school-age children.

Career premium. Potential earnings are linked across periods because of returns to career continuity. If the agent is employed in job $j \in \{E, N\}$ during the winter (season A) of period 1, we assume she receives supplemental income β_j in the event she remains employed in that same job during the winter of period 2. For simplicity, we assume that this supplemental income—which we call the career premium—is the same across sectors, though this assumption is inessential.

Assumption C2. $\beta_E = \beta_N \equiv \beta > 0, \quad \beta_O = 0$.

We regard β as a reduced-form representation of sector-specific human capital, seniority provisions, defined-benefit pensions, and other mechanisms that reward agents who remain in the same line of work throughout their careers. Because (in the real world) the school year lasts much longer than the summer, we assume that receipt or non-receipt of the career premium depends only on employment status in the winter season.

Utility. We assume that utility is additively separable across periods and can be written as

$$v(s_1, s_2|\theta) = u(s_1|\theta_1) + u(s_2|\theta_2) + \beta(s_1, s_2)$$

where $u(\cdot)$ is defined as in the static model. The function $\beta(s_1, s_2)$ equals β if the agent receives a career premium and zero otherwise. The bonus for year-round work, if received, is embedded in $u(\cdot)$. Since we consider only two periods, we ignore discounting to avoid cluttering the notation.
Strategies. The full strategy space consists of $9 \times 9 = 81$ ordered pairs $s \equiv (s_1, s_2)$ corresponding to actions taken in each of the two years, but—as in the static model—strategies OE, ON, and NE are dominated within each year, leaving $6 \times 6 = 36$ remaining possibilities.

Of these, only 11 strategies are admissible (potentially optimal) under our assumptions. Although a full characterization of the model solution would proceed by backward induction, we can establish the results of interest more directly by exploiting the fact that only the career premium links choices across years: decisions are otherwise separable between the two periods.

Lemma 2. In the first period, each of the strategies $s_1^*(\theta) \in \{OO, EO, EE, NO, NN, EN\}$ is optimal for some set of parameter values. In the second period:

(i) If $s_1^*(\theta) \in \{OO, EO, NO\}$, then $s_2^*(\theta) = s_1^*(\theta)$.

(ii) If $s_1^*(\theta) = EE$, then each of $s_2^*(\theta) \in \{EE, EO\}$ is potentially optimal.

(iii) If $s_1^*(\theta) = EN$, then each of $s_2^*(\theta) \in \{EN, EO\}$ is potentially optimal.

(iv) If $s_1^*(\theta) = NN$, then each of $s_2^*(\theta) \in \{NN, NO, EO, OO\}$ is potentially optimal.

Proof: To show that all six strategies may be optimal in the first period, it suffices to consider the case $\beta \approx 0$ and appeal to the corresponding arguments in the static setup of step II. Next:

(i) Suppose $s_1^*(\theta) \in \{OO, EO, NO\}$. Since the increment to utility from summer work is lower in period 2 than in period 1 (reflecting increased childcare costs), revealed preference ensures that the agent won’t work in the summer of period 2, or equivalently $s_2^*(\theta) \in \{OO, EO, NO\}$. Furthermore, revealed preference—reinforced by the career premium, which discourages sectoral switching across years—ensures that these agents will make the same choice in both years. It follows that $s_2^*(\theta) = s_1^*(\theta)$.

(ii) If $s_1^*(\theta) = EE$, then revealed preference—again reinforced by the career premium—ensures that the agent will continue to work in the education sector in the winter of period 2. Revealed preference also ensures that, in the summer of period 2, the agent will either work in education (if $\Delta_2 - \Delta_1$ is small) or refrain from working (if $\Delta_2 - \Delta_1$ is large), so that $s_2^*(\theta) \in \{EE, EO\}$.

(iii) If $s_1^*(\theta) = EN$, the argument is analogous to that for $s_1^*(\theta) = EE$.

(iv) Suppose that $s_1^*(\theta) = NN$, and consider the limiting case $\beta \to 0$ so that the problem becomes separable across periods. Then, since the two periods are identical except that $\Delta_2 \geq \Delta_1$, the same arguments used in the proof of Theorem 1 establish the potential optimality of NN (if $\Delta_2 \approx \Delta_1$) and NO, EO, OO (if $\Delta_2 \gg \Delta_1$).

The lemma characterizes the distinct kinds of life-cycle career patterns that arise in our model. First, many agents make the same labor supply decisions throughout their working lives. Second, some agents work in the education sector, engage in summer work early in their careers, and then refrain from summer work once they have school-age children. Third, some agents work in the non-education sector early in their careers, then switch to the more flexible education sector once they face summer childcare costs. Finally, some agents work in non-education early in their careers, then withdraw from the labor force altogether when raising children.\footnote{As modeled here, decisions to quit the labor force in period 2 are driven solely by parents’ incremental disutility from \textit{summer} employment. If childcare considerations impose positive costs on working parents during the school year as well, those costs would provide additional incentives for agents to leave employment in period 2.}

Our final result extends Theorem 1 from our static model to the two-period setting.
Theorem 2. Consider comparative statics as Δ_2 increases to $\Delta_2' = \Delta_2 + \delta$, with all other parameters held fixed; let θ and θ' describe the original and perturbed parameter vectors. Conditional on choices made in period 1 (s_1^\ast), choices made in period 2 (s_2^\ast) respond as in the static model. Additionally, however, some agents for whom $s(\theta) = (NN, NN)$ will instead choose $s'(\theta') = (EE, EO)$ or $s'(\theta') = (EO, EO)$ when summer childcare costs rise. All other choices made in period 1 are unaffected by changes in Δ_2.

Proof: By backward induction, period 2 in our two-period model is isomorphic to the single period considered in our static model, with potential earnings modified where appropriate for agents eligible for a career premium. As a result, all of our earlier comparative statics pass through unaltered in the second period of our dynamic setup.

We now show that some agents switch from NN to EE or EO in period 1 in response to future summer childcare costs. To see how this can arise, consider the special case in which $w_{EA} > 0$, $w_{EB} = 0$, $w_{N} = 0$, $\phi_E = \phi_N = 0$, $\Delta_1 \approx 0$, $\Delta_2 \approx 0$, and $b > w_{EA}$. In this special case, the agent initially chooses (NN, NN) under baseline parameters θ because earnings from doing so—which come exclusively in the form of the year-round continuity bonus b—exceed earnings available in the education sector.

Now increase summer childcare costs ($\delta \to \infty$) to the point that the agent no longer finds it optimal to work in the summer of period 2. Because the agent’s earnings from non-education employment were predicated on year-round employment, the agent will switch from $s_2^\ast(\theta) = NN$ to $s_2^\ast(\theta') = EO$, thereby taking advantage of the more flexible earnings opportunities afforded by education employment. But if, in addition, $b < w_{EA} + \beta$, the agent will also switch from $s_1^\ast(\theta) = NN$ to $s_1^\ast(\theta') = EO$ because doing so secures receipt of the education sector’s career premium in period 2.

If we modify this example so that $w_{EB} = \epsilon > 0$, the agent will instead switch to (EE, EO).

With this last result, we can see that the model generates two kinds of sectoral sorting in response to summer childcare constraints. First, there is contemporaneous sorting: some agents switch from non-education into education upon experiencing summer childcare costs. Second, there is anticipatory sorting: some agents switch from non-education into education earlier in their careers. Intuitively, agents who know they will eventually want to make such a change may seek education employment from the beginning because of the returns to career continuity.

Our model also formalizes two distinct ways in which agents may be penalized for interrupted employment: agents who refrain from summer work miss out on the returns to continuous year-round employment, while those who switch sectors mid-career upon encountering summer childcare costs miss out on the returns to continuous life-cycle employment.

E Supplemental analyses

We close this appendix with two additional analyses: first, an examination of the tendency for a given individual to experience summer work interruptions in back-to-back years; second, a look at supplemental earnings among teachers during the summer versus the school year.

E.1 Recurrent summer work interruptions in consecutive years

Coglianese and Price (2020) introduce a method for identifying seasonal work interruptions at the individual level on the basis of patterns of recurrent transitions from employment into non-employment spaced exactly 12 months apart. Exploiting the limited longitudinal dimension of the
CPS, we apply that method to determine the extent to which individuals experiencing summer work interruptions tend to do so in back-to-back years.

Let \(y_{it} \) be an indicator variable equal to 1 if individual \(i \) was employed in period \(t-1 \) but not in period \(t \). Using our sample of prime-age CPS respondents, we first identify all such work interruptions that occur during an individual’s first four months in the sample, such that—barring attrition—we can observe that individual’s employment status one year later. Letting \(t_0 \) denote the period in which the base separation occurred, we stack all available observations 10–14 months after baseline and estimate regressions of the form

\[
y_{it} = \sum_{\tau=10}^{14} \rho_{\tau} 1\{t - t_0 = \tau\} + \beta \text{weeks}_t + \epsilon_{it} \tag{21}
\]

Thus \(\rho_{10}, \ldots, \rho_{14} \) capture the relative probability of a recurrent work interruption occurring 10, 11, 12, 13, or 14 months after the initial one, adjusting for the fact that more separations tend to be observed when successive reference weeks are further apart. We cluster standard errors at the household level to allow for within-person serial correlation in the outcome variable as well as cross-sectional dependence among members of the same household.

Following Coglianese and Price (2020), we define the excess recurrence of work interruptions at annual intervals as \(\rho_{12} - \frac{1}{2}(\rho_{11} + \rho_{13}) \). Intuitively, excess recurrence tells us to what extent a given group of workers exhibit repeated exits from employment spaced exactly 12 months apart, net of the background rate of exit observed at similarly distant (but non-annual) horizons. Coglianese and Price demonstrate that excess recurrence aligns well with the demographic, sectoral, and temporal hallmarks of seasonal fluctuations in US employment.

Appendix Figure A.3 plots estimates of excess recurrence obtained by stratifying our CPS sample by sex and by the calendar month in which the base separation occurred. For women, work interruptions occurring between the May and June reference weeks are 4.9 percentage points more likely to be repeated 12 months later than 11 or 13 months later. Excess recurrence is also elevated in July—echoing the continued outflows of women from employment we see in that month (Figure 3)—as well as in January, when many businesses are trimming payrolls after the holiday shopping season. As a point of comparison, Coglianese and Price (2020) estimate an excess recurrence of 1.4 p.p. among all prime-age CPS respondents. By this measure, then, women show a pronounced tendency not only to exit employment at the start of summer, but to do so in (at least) two consecutive years.\(^{12}\) The figure also provides another illustration of the very different seasonal work patterns we observe among men, for whom separations at the onset of winter—rather than the onset of summer—are most likely to recur 12 months later.

E.2 Schools and Staffing Survey (SASS)

The 1999–2000 Schools and Staffing Survey (SASS) from the National Center for Education Statistics provides a nationally representative snapshot of US public school teachers.

Variable definitions: The survey asks teachers about their supplemental earnings—i.e., earnings in addition to their base salary—during the summer months and, separately, during the regular school year. The survey additionally delineates between school-based and non-school-based supplemental work, where school-based work entails participation in extracurricular activities, coaching,

\(^{12}\) Although annually recurrent separations are quite common among those employed in the education sector (consistent with patterns reported elsewhere in the paper), we observe qualitatively similar—albeit quantitatively muted—patterns if we exclude baseline departures from educational employment into non-employment.
and summer/evening teaching. From these earnings variables, we create indicator variables for supplemental work (school- or non-school-based) during the regular school year and summer months. We use these variables in our analysis of gender differences in the propensity to engage in supplemental work and earnings from supplemental work during the school year and summer months. SASS provides earnings categories for each type of supplemental work. To construct numeric earnings, we take the midpoint of each category. We multiply the top-coded earnings category by a constant factor of 1.5. We assign zero earnings when the individual does not engage in that type of supplemental work. We then deflate earnings to December 2019 dollars using the Personal Consumption Expenditures price index.

We also define the following regression controls:

- Teacher total experience: total years of teaching experience, in years
- Teacher age category: <30 years, 30–39 years, 40–49 years, 50+ years
- Teacher race/ethnicity: White non-Hispanic, Black non-Hispanic, Hispanic, other non-Hispanic
- Teacher educational attainment: indicator for whether the teacher has a master’s degree
- School urban/rural status: large/mid-size city, urban fringe, small town/rural
- School region: Northeast, Midwest, South, West
- School level: elementary, secondary, combined
- Teacher field of assignment: pre-K, kindergarten, general elementary; math/science; English/language arts; social science; special education; foreign languages; bilingual/ESL; vocational/technical education; all others

Sample restrictions: We limit our sample to regular full-time teachers.

Regression-adjusted gender gaps: We regress the earnings from each type of supplemental work on a female indicator, age categories, teaching experience, race/ethnicity, master’s degree, school type (primary, secondary), subject taught, urban status of school, and Census region. Each regression is weighted by the SASS sampling weights.

Appendix Figure E.1 plots the regression-adjusted gender gaps in earnings from supplemental work among full-time public school teachers, throughout the summer months and the regular school year, controlling for demographic, job, and school characteristics.

We also explored gender differences in the propensity to engage in each type of supplemental work. Conditional on observables, female teachers are 18.8 percentage points less likely than male teachers to engage in any type of paid summer work. Furthermore, the gender gap in supplemental work is 3.8 percentage points larger during the summer months than during the regular school year, with the growth stemming from a differential uptick in men working outside of schools during summer. Overall, these results echo our above findings that, within granular educational occupations, women’s work hours fall during the summer months, relative to men’s and relative to the regular school year.
Appendix Figure E.1: Gender gaps in supplemental earnings among teachers

Source: Schools and Staffing Survey.
Notes: Supplemental earnings of full-time teachers during the regular school year and the summer months, by gender, in 2019 dollars. School-based work entails participation in extracurricular activities, coaching, or summer/evening teaching. The regression-adjusted gender gaps control for age categories, teaching experience, race, ethnicity, master’s degree, school type (primary, secondary), subject taught, urban status of school, and Census region.