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Abstract

Sequential equilibrium is the conventional approach for analyzing multi-stage games
of incomplete information. It relies on mutual consistency of beliefs. To relax mutual
consistency, I theoretically and experimentally explore the dynamic cognitive hierarchy
(DCH) solution. One property of DCH is that the solution can vary between two
different games sharing the same reduced normal form, i.e., violation of invariance
under strategic equivalence. I test this prediction in a laboratory experiment using
two strategically equivalent versions of the dirty-faces game. The game parameters are
calibrated to maximize the expected difference in behavior between the two versions, as
predicted by DCH. The experimental results indicate significant differences in behavior
between the two versions, and more importantly, the observed differences align with
DCH. This suggests that implementing a dynamic game experiment in reduced normal
form (using the “strategy method”) could lead to distortions in behavior.
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1 Introduction

Multi-stage games of incomplete information are important workhorse models in economics,
political science, finance, social networks, and even biology. These games tend to be more
intricate than games of perfect information due to the potentially large number of information
sets, regardless of how simple the game rules are.1 The standard approach for analyzing these
games is to solve for the sequential equilibrium, wherein players are assumed to formmutually
consistent beliefs at each information set. In other words, each player’s conjecture about the
behavioral strategies of others aligns with the actual strategies of those other players.

The assumption of mutual consistency of the belief system is crucial in standard equilib-
rium theory, as it, along with the best response requirement, pins down precise predictions
of equilibrium outcomes. However, this requirement may be implausibly strong from an em-
pirical standpoint, especially for complicated multi-stage games of incomplete information,
as indicated by behavior observed in many laboratory experiments (e.g., Camerer, 2003).

In response to these findings, I develop a new tool for analyzing multi-stage games of
incomplete information without relying on mutual consistency of beliefs: the “Dynamic
Cognitive Hierarchy (DCH) Solution.” The contribution of this paper encompasses both
theoretical and experimental aspects. Theoretical contributions involve extending the DCH
solution from games of perfect information, as characterized by Lin and Palfrey (2022),
to multi-stage games of incomplete information. On the experimental front, I design and
conduct a laboratory experiment to test a key implication of DCH—the violation of invari-
ance under strategic equivalence2—in the context of the dirty-faces game, a classic game for
studying iterative rationality.

Two extensive games are strategically equivalent if they share the same reduced normal
form. It has been argued that any good equilibrium should exhibit invariance in strategi-
cally equivalent games (e.g., Kohlberg and Mertens, 1986). This invariance property is also
appealing from the standpoint of experimental design as it suggests that implementing a
dynamic game with its reduced normal form does not distort behavior. By doing so, one can
gather more experimental data, particularly at information sets that are only occasionally
reached. This approach to experimental design is commonly referred to as the “strategy
method” (Selten, 1967).

In experimental methodology, an ongoing debate surrounds whether the use of the strat-
egy method distorts behavior (Brandts and Charness, 2011). DCH sheds light on this debate
by indicating a potential violation of invariance under strategic equivalence, suggesting that
the strategy method could theoretically create distortions in behavior. To empirically test
this prediction, I implement a dirty-faces game experiment, which consists of two treatments:
the sequential and the simultaneous treatments. In the sequential treatment, the game is
played period-by-period. Players can observe the history and are asked to make decisions at
realized information sets. In contrast, in the simultaneous treatment, the game is played in

1For example, Johanson (2013) estimates that in a two-person Texas Hold’em game, the number of

information sets is around 10162, which is 1082 times larger than the number of atoms in the universe.
2The violation of invariance under strategic equivalence is sometimes referred to as “the representation

effect” in the literature.
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reduced normal form, where players choose their contingent strategies.

Furthermore, the game parameters used in the experiment are selected using an “optimal
design approach,” where I first calibrate DCH using data from previous dirty-faces game
experiments reported by other studies, and then select the game parameters to maximize the
expected treatment effect. The utilization of an optimal design approach offers a systematic
method for experimenters to choose game parameters, which is not commonly applied in
economic experiments. To some extent, the experimental design in this paper serves as a
proof-of-concept illustrating how this approach can help experimenters in designing future
theory-testing experiments.

By employing this fine-tuned experimental design, significant treatment effects involving
the violations of invariance are detected in the data. Both the direction and magnitudes of
the observed differences align with the predictions of DCH. Furthermore, when comparing
DCH with alternative behavioral solution concepts that relax the best response requirement
and the ability to make Bayesian inferences, we find that DCH significantly outperforms
other models in both treatments. While there is evidence of the failure of best responses and
Bayesian inferences, the observed violation of invariance in the data is primarily attributed
to the relaxation of mutual consistency.

To offer readers a better intuitive understanding of the paper, I will next provide an
overview of the DCH solution, illustrate its application in the dirty-faces game, and discuss
the experimental design and findings.

Overview of the DCH Solution

The DCH solution is akin to the “level-k model,” a non-equilibrium framework introduced
by Nagel (1995). That model relaxes the mutual consistency requirement in simultaneous-
move games by assuming a hierarchical structure of strategic sophistication among the play-
ers. In the level-k model, each player is endowed with a specific level of sophistication. Level
0 players are non-strategic and choose their actions randomly. Level k players, on the other
hand, incorrectly believe that all other players are level k−1 and best respond to this belief.3

The level-k model has been widely applied to organize experimental data in simultaneous-
move games like the beauty contest game, coordination games, sender-receiver games, auc-
tion games, and more. Nevertheless, when applying the standard level-k model to dynamic
games, a logical conundrum arises: level k players are assumed to choose actions that max-
imize the continuation value of the game, while believing that all other players are level
k− 1 in the continuation game. Consequently, each player’s belief about the levels of others
remains fixed from the beginning, potentially leading to situations where level k players are
“surprised” by an opponent’s move that contradicts the strategy of a level k − 1 player.

To illustrate this conundrum, consider the extensive game shown in Figure 1. Suppose
the level-k model predicts that level 1 player 1 will choose A, while level 2 player 1 will choose
B. Since level 3 player 2 thinks player 1 is level 2, he believes that player 1 will certainly

3In this paper, level 0 players may be interchangeably referred to as “non-strategic players,” and level

k ≥ 1 players as “strategic players” since they best respond to their beliefs.
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choose B. From the perspective of level 3 player 2, A is an “off-path event” of player 1. If
A is chosen, level 3 player 2’s belief about player 1’s level is incompatible with the history.

1

2

L R

A: Level 1

2

L R

B: Level 2

Figure 1: An illustration game for the level-k model in extensive games.

To avoid this issue, the DCH solution assumes that level k players believe all other players
have lower levels distributed anywhere from level 0 to k − 1, and update their beliefs about
others’ levels as the history unfolds. Specifically, suppose each player’s level is drawn from
the distribution p = (pk)

∞
k=0. Level 0 players uniformly randomize at every information set.

Level k players’ prior belief about any other player being level j < k is pj/
∑k−1

l=0 pl, which
follows the Cognitive Hierarchy (CH) specification proposed by Camerer et al. (2004). Level
k players correctly perceive lower-level players’ behavioral strategies and update their beliefs
about the other players’ levels using Bayes’ rule as the game progresses.

The previous illustrative example clearly demonstrates how DCH solves the conundrum.
Suppose DCH level 1 player 1 chooses A, while DCH level 2 player 1 selects B. In contrast
to the level-k model, DCH assumes that level 3 player 2’s prior belief about player 1 being
level j = 0, 1, 2 is pj/

∑2
l=0 pl. Moreover, after observing player 1’s choice of A, level 3

player 2 eliminates the possibility of player 1 being level 2 (otherwise, B would have been
chosen), and the beliefs about player 1 being level 0 and level 1 are 0.5p0

0.5p0+p1
and p1

0.5p0+p1
,

respectively. Because level 0 players uniformly randomize at every information set, strategic
players’ beliefs are always well-defined, effectively resolving the conundrum.

When extending DCH from games of perfect information to multi-stage games of incom-
plete information, players will update their beliefs about others’ levels and payoff-relevant
private types at the same time. That is, the DCH belief system is a joint measure about the
types and levels of other players.

Proposition 1 establishes that if the private types are independently drawn across players,
every level of every player’s posterior belief remains independent across players at every
information set. It’s important to note that this property of DCH holds only in multi-stage
games with observed actions4 but not in general extensive games. Furthermore, when private
types are correlated across players, Proposition 2 demonstrates that the original game (with
correlated types) can be transformed into another game with independent types, and the
DCH behavioral strategy profiles remain invariant in both games. These two propositions
provide the recipe for solving DCH in multi-stage games of incomplete information. Lastly,

4Games of perfect information belong to the framework of multi-stage games with observed actions.

3



because level 0 players uniformly randomize at every information set, when the sizes of
action sets differ, level 0 players’ behavioral strategies might not be outcome-equivalent.
This, in turn, affects all higher-level players, as DCH is solved recursively from the bottom
of the hierarchy, causing DCH solutions to differ across strategically equivalent games. This
violation of invariance under strategic equivalence is then illustrated in the dirty-faces game.

The Dirty-Faces Game

The dirty-faces game is a diagnostic game to study iterative rationality. It was originally
introduced as a mathematical puzzle by (Littlewood 1953, pp. 3-4):

Three ladies, A,B,C, in a railway carriage all have dirty faces and are all laughing.
It suddenly flashes on A: why doesn’t B realize C is laughing at her? Heavens! I
must be laughable.

This game is frequently discussed in understanding iterated reasoning and plays a central
role in many studies of common knowledge (see, for example, Binmore and Brandeburger
(1988); Fudenberg and Tirole (1993), and Geanakoplos 1994). To illustrate the violation of
invariance under strategic equivalence, I consider two versions of the game: the sequential
and simultaneous versions.

The sequential (two-person) dirty-faces game was previously studied experimentally by
Weber (2001) and Bayer and Chan (2007).5 In this game, each player is randomly assigned a
face type: either “dirty” or “clean.” Once the face types are determined, players can see the
other player’s face, but not their own. Additionally, if at least one player has a dirty face, a
public announcement is made, ensuring that this information becomes common knowledge.
After observing the other’s face and the announcement, players take actions in a series of
periods. In each period, players simultaneously choose between “wait” and “claim” (to have
a dirty face). The actions are revealed to both players at the end of each period. If both
players decide to wait, the game proceeds to the next period. Otherwise, the game ends
after the period in which at least one player chooses to claim. Players receive rewards for
correctly claiming to have a dirty face but are penalized for making false claims.

The second strategically equivalent version is the simultaneous (two-person) dirty-faces
game, which, to the best of my knowledge, has never been studied experimentally before.
In this version, the information structure remains identical to the sequential version. The
only difference is that after observing the other’s face and announcement, both players
simultaneously decide the earliest period to claim as if the game were played in the sequential
version. The payoffs are then determined accordingly.

Since the two versions are strategically equivalent, the sequential equilibrium is outcome-
equivalent. Consider two players, Ann and Bob. When a player, let’s say Ann, sees a clean
face (along with the announcement), she should recognize that her own face is dirty and

5Weber (2001) and Bayer and Chan (2007) studied both two-person and three-person games. Since the

experimental focus of this paper is on the two-person game, I will primarily focus on the discussion of

two-person games in this paper and provide the discussion of three-person games in Appendix C.
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claim in period 1. Yet, if Ann sees a dirty face and is rational, she will wait in period 1 since
she has no knowledge of her own face type. In equilibrium, Ann believes that Bob would
have claimed in the first period if her own face were clean. If the game does indeed reach
the second period, Ann will realize that her face is dirty and claim.

In contrast, due to the presence of non-strategic level 0 players, the DCH solution lacks
common knowledge of rationality, causing it to differ dramatically from the standard equi-
librium solution. Furthermore, DCH makes distinct predictions between the two versions,
demonstrating the violation of invariance under strategic equivalence.

To understand the intuition of DCH, we first focus on the sequential version. In period 1,
all strategic players behave like rational players, claiming immediately upon seeing a clean
face and the announcement, while waiting when they see a dirty face. In contrast, level
0 players choose randomly regardless of their observations. Unlike strategic players, the
actions of level 0 players convey no information about the true face types. Therefore, when
observing a dirty face and the game proceeds beyond period 1, strategic players will believe
that there are two possible situations:

1. If the other player is level 0, then their action is randomly determined and provides no
information about my own face.

2. If the other player is level k ≥ 1, then my own face is certainly dirty because the other
player would have claimed in period 1 if my own face were clean.

Consequently, after period 1, a strategic player faces a dynamic tradeoff. If she waits and
the game proceeds to the next period, she will become more certain about having a dirty
face because the other player is less likely to be a level 0 player. However, the risk of waiting
is that the game might be randomly terminated (by a level 0 opponent) and the payoff is
further discounted due to impatience. As a result, the DCH solution is characterized by
level-dependent stopping periods, which depend on the prior distribution of levels and the
payoffs. Because lower-level players are more likely to believe the other is level 0, they need
to wait longer to become certain enough about having a dirty face.

The intuition of DCH in the simultaneous version is the same as in the sequential version.
However, in the simultaneous version, the number of available strategies changes, causing
level 0 players’ behavioral strategies to differ between the two versions. Consequently, all
higher-level players behave differently between the two versions, demonstrating the violation
of invariance under strategic equivalence in DCH.6 Furthermore, the magnitude of the dif-
ference in behavior predicted by DCH depends on the game parameters. Specifically, there
exists two disjoint sets of game parameters, where strategic players tend to claim earlier
when observing a dirty face in one set in the sequential version and later in the other set.

Experimental Design and Findings

To assess the violation of invariance unders strategic equivalence in the dirty-faces game,
I design and conduct a laboratory experiment that manipulates the timing structures (se-
quential vs. simultaneous) using a between-subject design. The main challenge in designing

6Refer to Section 5.3 for a detailed discussion of the violation of invariance in dirty-faces games.
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the experiment, as suggested by DCH, is the selection of game parameters. Specifically, the
magnitude of the treatment effect predicted by DCH depends on both the game parameters
and the true distribution of levels, which is unknown before the experiment is conducted.

To address this, I develop an “optimal design approach” where I first estimate the dis-
tribution of levels using data from an experimental dirty-faces game reported by Bayer and
Chan (2007). Then, I select game parameters to maximize diagnosticity by considering a
mix of parameters expected to yield various magnitudes of the treatment effect.7

This optimal design approach has two advantages. First, it provides experimenters with
a systematic method for selecting game parameters when designing experiments. This is
important to experimenters since, as noted by Moffatt (2020), when choosing the parameters,
“most experimenters have followed an informal approach” (Moffatt 2020, pp. 335). Second,
it serves as a stress test for DCH. After calibrating the prior distribution of levels, DCH offers
precise predictions regarding the magnitudes of violations of invariance. Instead of fitting
the model ex post, this approach provides a benchmark prediction before the experiment is
conducted, enabling us to assess the predictive power of DCH.

A significant violation of invariance under strategic equivalence is detected in the data,
and more importantly, how it is violated aligns with DCH. Additionally, to analyze whether
the difference found in the data can be attributed to the relaxation of other equilibrium
requirements, I compare DCH with two alternative models: the Agent Quantal Response
Equilibrium by McKelvey and Palfrey (1998) and the Cursed Sequential Equilibrium by
Fong et al. (2023a). These alternatives relax the best response requirement and Bayesian
inferences, respectively. The estimation results indicate that for both treatments, DCH
fits the data significantly better than the other two solutions. Although relaxing other
requirements could improve the fitness, the observed difference is primarily attributed to the
relaxation of mutual consistency.

This experimental result highlights how implementing a dynamic game experiment in
reduced normal form (using the “strategy method”) can lead to significant distortions in
behavior. In addition, DCH provides a better explanation for how these distortions arise
compared to other behavioral solution concepts. This suggests that if using the strategy
method is necessary, DCH can offer a more reasonable assessment of behavioral distortions
compared to the natural approach, which allows subjects to make decisions when it’s their
turn, as if the game tree were being fully implemented.8

The paper is organized as follows. Section 2 discusses the related literature. Section 3
sets up the model, and general properties of the DCH solution are established in Section 4.
In Section 5, I demonstrate the violation of invariance under strategic equivalence of DCH
in a class of two-person dirty-faces games. Section 6 describes the experimental design, and
Section 7 reports the experimental results. Finally, Section 8 concludes the paper.

7It is worth remarking that the optimal design approach is not referring to the one in the statistical

literature, whose goal is to maximize the determinant of the information matrix. For more information

on optimal design in the statistical literature and its applications in risky lottery experiments, see Moffatt

(2020) Chapter 14, and Bland (2023).
8This approach is commonly referred to as the “direct-response method.”
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2 Related Literature

The DCH solution is closely related to a number of behavioral models of games. Over the past
thirty years, the idea of limited depth of reasoning has been theoretically studied by various
researchers, including Selten (1991, 1998), Aumann (1992), Stahl (1993), Alaoui and Penta
(2016, 2018) and Lin and Palfrey (2022). In addition to theoretical work, Nagel (1995)
conducted the first experiment on the “beauty contest game” to study people’s iterative
reasoning process. In this game, each player simultaneously chooses an integer between 0
and 100. The winner is the player whose choice is closest to the average of all numbers
multiplied by p ∈ (0, 1). The unique equilibrium predicts that all players should choose 0.
However, empirical observations show that almost no player chooses the equilibrium action.
Instead, players seem to behave as if they are performing some finite number of iterative
best responses.9

To explain the data, Nagel (1995) proposed the “level-k model,” which assumes that
each player is endowed with a specific “level” of reasoning. Level 0 players randomly select
actions from their action sets. For every k ≥ 1, level k players believe that they are one
level of reasoning higher than the rest and best respond accordingly. The level-k model has
been applied to various environments, including simultaneous-move games (Costa-Gomes
et al., 2001; Crawford and Iriberri, 2007a), two-person guessing games (Costa-Gomes and
Crawford, 2006), auctions (Crawford and Iriberri, 2007b), and sender-receiver games (Cai
and Wang, 2006; Wang et al., 2010).

The standard level-k model has been successful in explaining the data and has been
extended in various ways. One such approach is the CH framework proposed by Camerer et
al. (2004), which assumes that players best respond to a mixture of lower-level players.10 In
this framework, level k players best respond to a mixture of lower levels, ranging from level
0 to k − 1. Furthermore, players hold accurate beliefs about the relative proportions of the
lower levels. However, this approach is primarily developed for simultaneous-move games,
and DCH extends it to dynamic games.

Another direction is to endogenize the levels of players. Alaoui and Penta (2016) consid-
ered a cost-benefit analysis approach, where players decide their levels of sophistication by
weighing the benefits of additional levels against the costs of doing so. The implications of
this model were further explored in Alaoui et al. (2020). In the same spirit as Stahl (1996),
Ho and Su (2013) and Ho et al. (2021) considered a canonical laboratory environment where
players repeatedly play the same game and endogenously choose a new level of sophistica-
tion for the next iteration of the game. This approach is different from DCH, where players
update their beliefs about other players’ levels after each move within a single game. Fur-
thermore, DCH players are strategic learners as they can correctly anticipate the evolution
of posterior beliefs in later information sets. This leads to a much different learning dynamic
compared to naive adaptive learning models.

9This empirical pattern has been robustly replicated in different environments. For instance, Ho et al.

(1998) and Bosch-Domenech et al. (2002) have found similar results in both laboratory and field experiments.
10In a similar vein, Stahl and Wilson (1995) and Levin and Zhang (2022) allow each level of players to

best respond to a mixture of lower-level players and equilibrium players.
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At a more conceptual level, the DCH solution is related to other solution concepts for dy-
namic games that relax the requirements of sequential equilibrium. DCH is a non-equilibrium
model that allows players at different levels to best respond to different conjectures about
other players’ strategies, while Agent Quantal Response Equilibrium (AQRE) by McKelvey
and Palfrey (1998) is an equilibrium model in which players make stochastic choices. Both
DCH and AQRE assume that players follow Bayes’ rule to make inferences. In contrast,
Cursed Sequential Equilibrium (CSE) by Fong et al. (2023a) and Sequential Cursed Equilib-
rium (SCE) by Cohen and Li (2022) are two different equilibrium models in which players
are able to make best responses but are unable to make correct Bayesian inferences.11

One common theoretical property of these behavioral solution concepts is the violation
of invariance under strategic equivalence, albeit in different ways. However, whether imple-
menting the same dynamic game with different methods creates any behavioral distortion
is an empirical question. Brandts and Charness (2011) surveyed 29 experiments that com-
pared the behavior under different elicitation methods and found that the invariance may
be violated under certain conditions.12 More recently, Li (2017) compared the second-price
auction and the ascending clock auction and found that players are more likely to follow
dominant strategies in the ascending clock auction. Additionally, Garćıa-Pola et al. (2020)
experimentally studied the invariance in four centipede games and reported that in three of
the four games, players tend to terminate the game earlier in the sequential version of the
game, which is consistent with DCH (Lin and Palfrey, 2022).13 Finally, it is worth noting
that Chen and Schonger (2023a,b) point out that the violation of invariance is linked to the
emotional salience induced during the experiment.

This paper also contributes to the literature on dirty-faces games. The concept of dirty-
faces game was originally introduced by Littlewood (1953) as a means to illustrate the
transmission of common knowledge. Binmore and Brandeburger (1988), Fudenberg and
Tirole (1993), and Geanakoplos (1994) were the first to theoretically study the dirty faces
games with the knowledge operator. Furthermore, Liu (2008) demonstrated that if players
are unaware of other players’ face types, they might incorrectly claim their face types, and
hence influence the transmission of knowledge among the players.

Weber (2001) and Bayer and Chan (2007) conducted the first two experiments on dirty-
faces games and found that many subjects fail to perform such iterative reasoning. More

11The CSE proposed by Fong et al. (2023a) captures the situation where players fail to understand how

other players’ actions depend on their own private information. On the other hand, the SCE introduced

by Cohen and Li (2022) depicts the bias where people fail to realize how others’ action depend on their

information set partitions. See Fong et al. (2023b) for a detailed comparison of the two solution concepts.
12In their survey, they observed no difference in 16 studies, systematic differences in four studies, and

mixed evidence in nine of them. In particular, they found suggestive evidence that the frequency of violation

of invariance is related to the number of available actions.
13In the three centipede games where termination occurs earlier in the sequential version, DCH predicts

that the distribution of terminal nodes from the simultaneous version (strategy method) will first-order

stochastically dominate the distribution from the sequential version (direct response method). In the fourth

centipede game where FOSD is not predicted, the empirical distributions of terminal nodes from the two

versions are almost identical.
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recent experiments have further demonstrated the persistence of failure in iterative reasoning
even when playing against fully rational robot players (Grehl and Tutić, 2015; Chen et al.,
2023). This failure has also been found to be correlated with cognitive abilities (Devetag and
Warglien, 2003; Bayer and Renou, 2016a,b), while the deviations from the equilibrium signif-
icantly decrease when the participants are selected through a market mechanism (Choo and
Zhou, 2022). Overall, these experimental findings provide support for the existence of non-
strategic types of players who are not sequentially rational, highlighting the heterogeneity
in strategic sophistication within the population.

3 The Model

Section 3.1 introduces the multi-stage games with observed actions, as proposed by Fu-
denberg and Levine (1983) and Fudenberg and Tirole (1991). This framework provides a
tractable approach to studying how players learn about the types and levels of others. Next,
the DCH solution for this family of games is defined in section 3.2.

3.1 Multi-Stage Games with Observed Actions

Let N = {1, . . . , n} be a finite set of players. Each player i ∈ N has a type θi drawn from
a finite set Θi. Let θ ∈ Θ ≡ ×n

i=1Θi be the type profile and θ−i be the type profile without
player i. All players have the common (full support) prior distribution F : Θ → (0, 1). At
the beginning of the game, each player is told his own type, but is not informed anything
about the types of others. Therefore, each player i’s initial belief about the types of others
when his type is θi is:

F(θ−i|θi) = F(θ−i, θi)∑
θ′−i∈Θ−i

F(θ′−i, θi)
.

If the types are independent across players, each player i’s initial belief about the types of
others is F−i(θ−i) = Πj �=iFj(θj) where Fj(θj) is the marginal distribution of player j’s type.

The game is played in “periods” t = 1, 2, . . . , T where T < ∞. In each period, players
simultaneously choose their actions, which will be revealed at the end of the period. The
feasible set of actions can vary with histories, so games with alternating moves are also
included. Let Ht−1 be the set of all available histories at period t, where H0 = {h∅} and HT

is the set of terminal histories. Let H = ∪T
t=0Ht be the set of all available histories of the

game, and let H\HT be the set of non-terminal histories.

For every player i, the available information at period t is in Θi ×Ht−1. Therefore, each
player i’s information sets can be specified as Ii ∈ Πi = {(θi, h) : θi ∈ Θi, h ∈ H\HT}. For
the sake of simplicity, the feasible set of actions for every player at every history is assumed
to be type-independent. Let Ai(h

t−1) be the feasible set of actions for player i at history ht−1

and let Ai = ∪h∈H\HTAi(h) be the set of player i’s all feasible actions in the game. For each
player i, Ai is assumed to be finite and |Ai(h)| ≥ 1 for any h ∈ H\HT . Let ati ∈ Ai(h

t−1) be
player i’s action at history ht−1, and let at = (at1, . . . , a

t
n) ∈ ×n

i=1Ai(h
t−1) denote the action
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profile at period t. If at is the action profile chosen at period t, then ht = (ht−1, at).

A behavioral strategy for player i is a function σi : Πi → Δ(Ai) satisfying σi(θi, h
t−1) ∈

Δ(Ai(h
t−1)). Let σi(a

t
i | θi, ht−1) denote the probability for player i to choose ati ∈ Ai(h

t−1).
A strategy profile σ = (σi)i∈N specifies a behavioral strategy for each player i. Lastly, each
player i has a payoff function (in von Neumann-Morgenstern utilities) ui : HT ×Θ → R, and
let u = (u1, . . . , un) be the profile of utility functions. A multi-stage game with observed
actions, Γ, is defined by the tuple Γ = 〈N,H,Θ,F , u〉.

3.2 Dynamic Cognitive Hierarchy Solution

Each player i is endowed with a level of sophistication τi ∈ N0 which is independently drawn
from the distribution Pi(τi). Without loss of generality, I assume Pi(τi) > 0 for all i ∈ N and
τi ∈ N0. Let τ = (τ1, . . . , τn) be the level profile and τ−i be the level profile without player i.

Due to the independence, the level profile is drawn from a distribution P : N
|N |
0 → (0, 1) such

that P (τ) = Πn
i=1Pi(τi). Following Lin and Palfrey (2022), I assume that players’ “types”

and “levels” are drawn independently.

Assumption 1. F and P are independent distributions.

Each player i has a prior belief about the opponents’ levels which satisfies the property
of truncated rational expectations. That is, for each i, j 
= i, and k, let P̂ k

ij(τj) be level k

player i’s prior belief about player j’s level, and P̂ k
ij(τj) satisfies:

P̂ k
ij(τj) =

{
Pj(τj)

∑k−1
m=0 Pj(m)

if τj < k

0 if τj ≥ k.
(1)

The intuition of (1) is that despite mistakenly believing all other players are at most level
(k -1),14 each level of players have a correct belief about the relative proportions of players
who are less sophisticated than they are.

In the DCH solution, a strategy profile is a level-dependent profile of behavioral strategy
of each level of each player. Let σk

i be level k player i’s behavioral strategy, where level 0
players uniformly randomize at every information set.15 That is, for every i ∈ N , θi ∈ Θi,
h ∈ H\HT , and for all a ∈ Ai(h),

σ0
i (a | θi, h) = 1

|Ai(h)| .

14The cognitive hierarchy specification is in line with behavioral and psychological evidence of overconfi-

dence across various domains (see, for instance, Camerer and Lovallo (1999); Moore and Healy (2008) and

Enke et al. 2023). While recent findings by Halevy et al. (2021) suggest the possibility of players believing

others to be more sophisticated than themselves, this behavior falls beyond the scope of this paper, as DCH

is developed within the confines of the standard CH framework.
15Uniform randomization is not the only way to model level 0 players’ behavior; however, one compelling

justification for its use is its universal applicability to all games in the same manner. In fact, the DCH

solution is well-defined as long as level 0 players’ behavioral strategy is fully mixed at every information set.
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At every history ht, every strategic level k player i forms a joint belief about all other
players’ types and levels.16 Their posterior beliefs at history ht depend on the level-dependent
strategy profile and the prior beliefs. To formalize the belief updating process, let σ−k

j =

(σ0
j , . . . , σ

k−1
j ) be the profile of strategies adopted by the levels below k of player j. Fur-

thermore, let σ−k
−i = (σ−k

1 , . . . , σ−k
i−1, σ

−k
i+1, . . . , σ

−k
n ) be the profile of behavioral strategies of

the levels below k of all players other than player i. It is worth noticing that all strategic
players believe every history is possible because P̂ k

ij(0) > 0 for all i, j ∈ N and k > 0,
and σ0

j (a | θj, h) > 0 for all j, θj, h and a ∈ Aj(h). Consequently, Bayes’ rule can be
applied to derive every level of players’ posterior belief about other players’ types and lev-
els. Specifically, for any i ∈ N , k ≥ 1 and θi ∈ Θi, a level-dependent strategy profile will
induce the posterior belief μk

i (θ−i, τ−i | θi, h) at every h ∈ H\HT with μk
i (θ−i | θi, ht−1) and

μk
i (τ−i | θi, ht−1) being level k player i’s marginal beliefs of other players’ types and levels at

history ht−1, respectively. Lastly, for any j 
= i, let μk
ij(θj, τj | θi, ht−1) denote level k player

i’s belief about player j’s type and level at history ht−1.

In the DCH solution, players correctly anticipate how they will update their posterior
beliefs at all future histories of the game, i.e., players are strategic learners. Therefore, for
any i, k, θi and any level-dependent strategy-profile of others σ−k

−i , type θi level k player i
believes the probability of at−i ∈ A−i(h

t−1) being chosen is

σ̃−k
−i (a

t
−i | θi, ht−1) ≡

∑
θ−i∈Θ−i

∑
{τ−i:τj<k ∀j �=i}

μk
i (θ−i, τ−i | θi, ht−1)

∏
j �=i

σ
τj
j (atj | θj, ht−1).

Furthermore, for every level of players, given lower-level players’ strategies, they can com-
pute the probability of any outcome being realized at any non-terminal history. In par-
ticular, for any i ∈ N , τi > 0, θ ∈ Θ, σ, and τ−i such that τj < τi for any j 
= i, let
P τi
i (hT |θ, ht−1, τ−i, σ

−τi
−i , σ

τi
i ) be level τi player i’s belief about the conditional realization

probability of hT ∈ HT at history ht−1 ∈ H\HT if the type profile is θ, the level profile is τ ,
and player i uses στi

i . Finally, level τi player i’s expected payoff at any ht ∈ H\HT is:

Euτi
i (σ | θi, ht) =∑
hT∈HT

∑
θ−i∈Θ−i

∑
{τ−i:τj<k ∀j �=i}

μτi
i (θ−i, τ−i | θi, ht)P τi

i (hT |θ, ht, τ−i, σ
−τi
−i , σ

τi
i )ui(h

T , θi, θ−i). (2)

The DCH solution of the game is defined as the level-dependent assessment (σ∗, μ∗), such
that σk∗

i (·|θi, ht) maximizes (2) for all i, k, θi and ht ∈ H\HT and the DCH belief system
μ∗ is induced by σ∗. Moreover, players are assumed to uniformly randomize over optimal
actions when they are indifferent. This is a typical assumption in level-k models, and it is
convenient because it ensures a unique DCH solution.

Lemma 1. The DCH solution is unique.

Proof. See Appendix A.

16Level 1 players always believe other players are level 0 whose actions are uninformative about their types.

Therefore, they don’t update their beliefs about the levels and types of others.
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Remark 1. For one-stage games, the DCH solution reduces to the standard CH solution

because one-stage games are essentially static games.

4 General Properties of the DCH Solution

In this section, I first characterize some general properties of the belief updating process of
DCH. Assume for now that players’ types are independently drawn, i.e., F(θ) =

∏
i∈N Fi(θi).

With this assumption, Proposition 1 shows that at every information set, the posterior beliefs
are independent across players. In other words, the DCH belief system is a product measure.

Proposition 1. For any multi-stage game with observed actions Γ, any h ∈ H\HT , any

i ∈ N , θi ∈ Θi, and for any k ∈ N, if the prior distribution of types is independent across

players, i.e., F(θ) =
∏n

i=1 Fi(θi), then level k player i’s posterior belief about other players’

types and levels at h is independent across players. That is,

μk
i (θ−i, τ−i|θi, h) =

∏
j �=i

μk
ij(θj, τj|θi, h).

Proof. See Appendix A.

Proposition 1 extends the independence property shown by Lin and Palfrey (2022) from
games of perfect information to multi-stage games with observed actions. This generalization
relies on that (1) the actions are perfectly observed and (2) players are able to perform
Bayesian inferences.

In multi-stage games with observed actions, as the prior distribution of types and levels is
independent across players,17 because every player’s action is perfectly monitored, strategic
players understand that each player’s action does not convey any information about other
players’ private information. In this case, Proposition 1 shows the belief system remains to
be a product measure in any information set. However, as pointed out by Lin and Palfrey
(2022), this is not true for general dynamic games of imperfect information. When the actions
are not perfectly observed, the marginal beliefs about others’ levels could be correlated across
players (see section 7.2 of Lin and Palfrey 2022).

Besides, the ability to perform Bayesian inferences plays a crucial role in maintaining the
independence property. In other behavioral solution concepts, such as the Cursed Sequential
Equilibrium proposed by Fong et al. (2023a), where players are unable to perform Bayesian
inferences, players may mistakenly believe that others’ actions are informative about another
player’s private information, even though the actions are perfectly observed and the prior
distribution of types is independent across players.

It is worth noticing that the independence property is useful for solving the DCH so-
lution. When there are more players or when the game structure becomes more complex,

17The independence property does not rely on Assumption 1. It holds as long as the priors distributions

of types and levels are both independent across players.
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computing the posterior belief can become challenging, as it involves level-dependent proba-
bility measures. Yet, Proposition 1 guarantees that the DCH belief system can be computed
player-wise rather than information-set-wise, which simplifies the computation process.

Next, I consider the case where the prior distribution of types is not independent across
players. When the types are correlated across players, their actions are informative about not
only their own private information but also the private information of players whose types
are correlated with them. Similar to the observations of Myerson (1985) and Fudenberg and
Tirole (1991), to deal with correlated types, the original game (with correlated types) can
be simply transformed into one game with independent types with a specific transformation.

For any multi-stage game with observed actions Γ, consider a corresponding transformed
game Γ̂ where the prior distribution of types is the product of independent uniform marginal
distributions. Namely,

F̂(θ) =
1∏n

i=1 |Θi| ∀θ ∈ Θ.

In addition, the utility functions are transformed to be

ûi(h
T , θi, θ−i) = F(θ−i|θi)ui(h

T , θi, θ−i).

Proposition 2 shows that the DCH level-dependent behavioral strategy profile is invariant
under the transformation between the transformed and original game, suggesting that the
independence assumption of the types is without loss of generality. Moreover, it is surprising
that the transformation is level-independent, given that the best response of each level is
determined iteratively. The intuition behind this is that, due to the independence of types
and levels (Assumption 1), players cannot make inferences about others’ types based on their
knowledge of others’ levels.

Proposition 2. The level-dependent assessment (σ̂, μ̂) is the DCH solution of the trans-

formed game (with independent types) if and only if the level-dependent assessment (σ, μ)

is the DCH solution of the original game (with correlated types) where σ = σ̂ and for any

i ∈ N , θi ∈ Θi, k > 0, and ht ∈ H\HT ,

μk
i (θ−i, τ−i|θi, ht) =

F(θ−i|θi)μ̂k
i (θ−i, τ−i|θi, ht)∑

θ′−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} F(θ′−i|θi)μ̂k

i (θ
′
−i, τ

′
−i|θi, ht)

.

Proof. See Appendix A.

Proposition 2 shows that at any information set Ii = (θi, h
t), player i’s belief of a specific

type-level profile (θ−i, τ−i) is proportional to prior belief of θ−i conditional on θi. In addition,
if F(θ−i|θi) → 1, i.e., θi is almost perfectly correlated with θ−i, then

μk
i (θ−i, τ−i|θi, ht) =

F(θ−i|θi)μ̂k
i (θ−i, τ−i|θi, ht)∑

θ′−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} F(θ′−i|θi)μ̂k

i (θ
′
−i, τ

′
−i|θi, ht)

→ μ̂k
i (θ−i, τ−i|θi, ht)∑

{τ ′−i:τ
′
j<k ∀j �=i} μ̂

k
i (θ−i, τ ′−i|θi, ht)

= μ̂k
i (θ−i, τ−i|θi, ht),
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implying that the belief in the transformed game aligns with the belief in the original game.
Intuitively speaking, if the types are almost perfectly correlated, then the remaining infor-
mation to be learned is solely others’ levels. Since the DCH behavioral strategy profile is
invariant under the transformation, the belief about others’ levels will also be invariant under
the transformation.

The next property is about the evolution of the support of the beliefs. Lin and Palfrey
(2022) have shown that in games of perfect information, the support of beliefs about the
levels weakly shrinks as the history unfolds. Proposition 3 extends this result to multi-stage
games with observed actions, indicating that the support of the marginal beliefs about the
levels weakly shrinks in later periods. Additionally, Proposition 3 demonstrates that the
marginal beliefs about other players’ types always maintain full support. In other words,
in the DCH solution, players will become more certain about the levels of others in later
periods while never completely ruling out any possibility of a type profile. To formally state
the proposition, I first define the support of the marginal beliefs.

Definition 1 (Support). For any multi-stage game with observed actions Γ, any i ∈ N , any

τi ∈ N, any θi ∈ Θi, and any history h ∈ H\HT , let suppi(θ−i|τi, θi, h) and suppi(τ−i|τi, θi, h)
be the support of level τi player i’s marginal belief about other players’ types and levels at

information set (θi, h), respectively. In other words, for any θ′−i and τ ′−i,

θ′−i ∈ suppi(θ−i|τi, θi, h) ⇐⇒ μτi
i (θ

′
−i | θi, h) > 0,

τ ′−i ∈ suppi(τ−i|τi, θi, h) ⇐⇒ μτi
i (τ

′
−i | θi, h) > 0.

Proposition 3. Consider any multi-stage game with observed actions Γ, any i ∈ N , any

τi ∈ N, and any θi ∈ Θi. The following two statements hold.

1. For any ht = (ht−1, at) ∈ Ht\HT , suppi(τ−i|τi, θi, ht) ⊆ suppi(τ−i|τi, θi, ht−1).

2. For any h ∈ H\HT , suppi(θ−i|τi, θi, h) = Θ−i.

Proof. See Appendix A.

The intuition behind Proposition 3 is that since it is always possible for other players to
be level 0, players can always rationalize any type profile by assuming all other players are
level 0.18 This implies that no matter how sophisticated the players are, common knowledge
of rationality is never reached in DCH, which suggests that DCH and the equilibrium theory
are fundamentally different solution concepts.

Furthermore, another feature of DCH that sharply contrasts with the equilibrium theory
is the violation of invariance under strategic equivalence. In DCH, since level 0 players uni-
formly randomize at every information set, their behavioral strategies might not be outcome-
equivalent if the cardinality of action sets changes. All higher-level players are subsequently

18If the action sets vary not only with histories but also with types, players may rule out the possibility

of certain type profiles when specific actions are chosen.
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affected, as DCH is solved recursively from the bottom of the hierarchy.19 In the remaining
part of the paper, I will demonstrate theoretically and experimentally how the invariance
property is violated in a family of dirty-faces games.

Finally, it is worth remarking that the DCH posterior beliefs about the types and levels
are generally correlated despite of that the types and levels are determined independently
(Assumption 1). This will also be illustrated in the next section.

5 DCH Analysis of the Dirty-Faces Games

The dirty-faces game was originally developed by Littlewood (1953) to study the role of
common knowledge.20 In this section, I focus on a particular specification of the game that
has been theoretically and experimentally studied in the literature (see e.g., Fudenberg and
Tirole (1993), Weber (2001) and Bayer and Chan 2007).

There are two players N = {1, 2} and there are up to 2 ≤ T < ∞ periods. At the
beginning of the game, each player i is randomly assigned a face type, denoted as xi, which
can be either xi = O (representing a clean face) or xi = X (representing a dirty face). The
face types are i.i.d. drawn from the distribution p = Pr(xi = X) = 1 − Pr(xi = O) where
p > 0 represents the probability of having a dirty face. After the face types are determined,
each player i can observe the other player’s face type x−i but not their own face. Hence,
player i’s private information is the other player’s face type x−i. Furthermore, if at least one
player has a dirty face, a public announcement is made, informing both players of this fact.

If there is no announcement, it is common knowledge to both players that both faces are
clean. To avoid triviality, I will focus on the case where an announcement is made.

After seeing the other player’s face type and the announcement, in each period, every
player i simultaneously chooses to “Wait” (W ) or “Claim” (to have a dirty face, C) and their
actions are revealed at the end of each period. The game will end after any period where
some player chooses C or after period T . The last period of the game is called the “terminal
period,” and both players’ payoffs are determined by their own face types and their actions
in the terminal period.

Suppose period t is the terminal period. If player i chooses W in the terminal period, his
payoff for this game is 0 regardless of his face type. On the other hand, if player i chooses
C to terminate the game, he will receive α > 0 if his face is dirty and −1 if his face is
clean. Besides, payoffs are discounted with a common discount factor δ ∈ (0, 1) per period.

19According to Thompson et al. (1952) and Elmes and Reny (1994), two extensive games share the same

reduced normal form if and only if they can be transformed into each other using a small set of elementary

transformations. Specifically, Elmes and Reny (1994) propose three such transformations: INT, COA, and

ADD, which preserve perfect recall. Because DCH is sensitive to the cardinality of action sets, it varies

under COA while remaining invariant under INT and ADD.
20It has also been referred to as the “cheating wives puzzle” (Gamow and Stern, 1958), the “cheating

husbands puzzle” (Moses et al., 1986), the “muddy children puzzle” (Barwise, 1981; Halpern and Moses,

1990), and the “red hat puzzle” (Hardin and Taylor, 2008).
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That is, if player i claims in period t and xi = X, player i will receive δt−1α, but player i
will receive −δt−1 if xi = O. To make players unattractive to gamble if they do not have
additional information except for the prior, following Weber (2001) and Bayer and Chan
(2007), I assume that

pα− (1− p) < 0 ⇐⇒ 0 < ᾱ ≡ pα

1− p
< 1, (3)

which guarantees it is strictly dominated to choose C in period 1 when seeing a dirty face.
Thus, a two-person dirty-faces game is defined by a tuple 〈T, δ, α, p〉 where (δ, ᾱ) ∈ (0, 1)2.

With common knowledge of rationality, the unique equilibrium can be solved through
the following iterative reasoning: When player i sees a clean face, the public announcement
will lead him to realize that his own face is dirty and claim in period 1. On the other hand,
when player i sees a dirty face, he will wait in period 1 because of the uncertainty about his
own face. However, if player −i also waits in period 1, player i will then recognize that his
own face is dirty and claim in period 2, as player i knows that if his own face were clean,
player −i would have claimed in period 1.

When implementing this game in a laboratory experiment, the natural approach is to
specify this game as a sequential dirty-faces game and allow subjects to make decisions
period-by-period, following the rules described above, using the direct-response method.
Alternatively, the other approach is the strategy method which specifies this game as a
simultaneous dirty-faces game—after seeing the other’s face and the announcement, players
simultaneously decide a “plan” which specifies the period to claim or always wait. From the
standard game-theoretic perspective, the sequential and simultaneous dirty-faces game are
strategically equivalent as they share the same reduced normal form. In the following, I will
demonstrate that the DCH solution varies in these two versions of the game, illustrating the
violation of invariance under strategic equivalence of DCH.

5.1 DCH Solution for the Sequential Dirty-Faces Games

In the sequential dirty-faces game, since there are (at most) T periods, a behavioral strategy
for player i is a mapping from the period and the observed face type (x−i ∈ {O,X}) to the
probability of choosing C. The behavioral strategy is denoted by

σi : {1, . . . , T} × {O,X} → [0, 1].

For the sake of simplicity, I assume that each player i’s level is i.i.d. drawn from the
distribution p = (pk)

∞
k=0 where pk > 0 for all k. In the DCH solution, each player’s optimal

behavioral strategy is level-dependent. Let the behavioral strategy of level k player i be σk
i .

Following previous notations, let μk
i (xi, τ−i|t, x−i) be level k player i’s belief about their own

face and the level of the other player, conditional on observing x−i and being at period t.
Level 0 players will uniformly randomize everywhere, so σ0

i (t, x−i) = 1/2 for all t and x−i.

Proposition 4 fully characterizes the DCH solution for the sequential dirty-faces games.
When observing a clean face, a player can immediately figure out that his face is dirty.
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Therefore, DCH coincides with the equilibrium prediction when x−i = O. However, if a
player sees a dirty face and the other player waits in period 1, he cannot tell his face type
for sure, no matter how sophisticated he is. Instead, he will believe that he is more likely to
have a dirty face as the game continues. As a result, conditional on observing a dirty face,
level k ≥ 2 players will claim as long as the reward ᾱ is high enough or the discount rate δ
is sufficiently low. Otherwise, they will wait for more evidence.

Proposition 4. For any sequential two-person dirty-faces game, the level-dependent strategy

profile of the DCH solution satisfies that for any i ∈ N ,

1. σk
i (t, O) = 1 for any k ≥ 1 and 1 ≤ t ≤ T .

2. σ1
i (t,X) = 0 for any 1 ≤ t ≤ T . Moreover, for any k ≥ 2,

(1) σk
i (1, X) = 0,

(2) for any 2 ≤ t ≤ T − 1, σk
i (t,X) = 1 if and only if

ᾱ ≥
[(

1
2

)t−1 − (1
2

)t
δ
]
p0[(

1
2

)t−1 − (1
2

)t
δ
]
p0 + (1− δ)

∑k−1
j=1 pj

,

(3) σk
i (T,X) = 1 if and only if

ᾱ ≥
(
1
2

)T−1
p0(

1
2

)T−1
p0 +

∑k−1
j=1 pj

.

Proof. See Appendix B.

To gain insights into the mechanics of the model, I analyze the behavior of level 1 and
2 players. Level 1 players believe the other player is non-strategic, implying that the other
player’s actions do not provide any information about their face type. Consequently, for
level 1 players, the announcement and their own observations are the only relevant sources
of information. As a result, level 1 players in each period will behave exactly the same as in
period 1—they will claim when seeing a clean face, and wait when seeing a dirty face. This
is because they cannot gather any additional information from the other’s actions, and their
belief about their own face type remains unchanged in every period.

For level 2 players, they will also claim to have a dirty face immediately upon seeing a
clean face. Furthermore, level 2 players are aware that level 1 players will claim in period 1
if they observe a clean face. In contrast, when observing a dirty face, level 2 players will wait
in period 1 (which is a strictly dominant strategy) and form a joint belief about the other
player’s level and their own face type if the game proceeds to period 2. Due to the presence
of level 0 players, even if the game proceeds to period 2, level 2 players are still uncertain
about their face types. However, they will know it is impossible that the other player is level
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1 and their own face is clean. Specifically, level 2 players’ posterior belief about the their
own face xi and the other player’s level τ−i is μ

2
i (xi, τ−i | 2, X) where

μ2
i (X, 0|2, X) =

(
1
2

)
p0p(

1
2

)
p0 + pp1

, μ2
i (O, 0|2, X) =

(
1
2

)
p0(1− p)(

1
2

)
p0 + pp1

,

μ2
i (X, 1|2, X) =

pp1(
1
2

)
p0 + pp1

, μ2
i (O, 1|2, X) = 0.

As the game proceeds beyond period 2, level 2 players will make the inference that if the
other player is level 1, then their own face is dirty; otherwise, the other player’s actions are
uninformative about their face types. Moreover, at any period 2 ≤ t ≤ T , level 2 players’
marginal belief about having a dirty face is

μ2
i (X|t,X) =

(
1
2

)t−1
p0p(

1
2

)t−1
p0 + pp1︸ ︷︷ ︸

= μ2
i (X,0|t,X)

+
pp1(

1
2

)t−1
p0 + pp1︸ ︷︷ ︸

= μ2
i (X,1|t,X)

=
p
[(

1
2

)t−1
p0 + p1

]
(
1
2

)t−1
p0 + pp1

,

which is increasing in t, suggesting that level 2 players are more certain about having a dirty
face in later periods. This is level 2 players’ benefit of waiting when seeing a dirty face.
However, the cost of waiting is that the other player may randomly end the game (if the
other is level 0) and the payoff is discounted. Therefore, level 2 players’ tradeoff is analogous
to the sequential sampling problem of Wald (1947)—they decide the optimal stopping period
to claim. The optimal stopping period depends on the parameters ᾱ and δ, as well as the
distribution of levels. This is in sharp contrast with the equilibrium prediction that the
equilibrium prediction is independent of the parameters.

In particular, for any period 2 ≤ t ≤ T , level 2 player i’s expected payoff of claiming to
have a dirty face is

Eu2
i (C|t) := δt−1

[
αμ2

i (X|t,X)− μ2
i (O|t,X)

]
.

At period T , the last period of the game, it is optimal to claim if and only if

Eu2
i (C|T ) ≥ 0 ⇐⇒ α ≥ μ2

i (O|T,X)

μ2
i (X|T,X)

⇐⇒ ᾱ ≥
(
1
2

)T−1
p0(

1
2

)T−1
p0 + p1

.

For any other period 2 ≤ t′ ≤ T − 1, it is optimal to claim at period t′ only if

Eu2
i (C|t′) ≥ Pr(t′ + 1|t′, X)Eu2

i (C|t′ + 1),

where Pr(t′ + 1|t′, X) is level 2 player i’s belief about the probability that player −i would
wait in period t′.21 Rearranging the inequality yields the condition stated in Proposition 4.

21Pr(t′ + 1|t′, X) is the probability that the other player chooses to wait in period t′, which is

Pr(t′ + 1|t′, X) = 0.5 · μ2
i (0|t′, X) + 1 · μ2

i (1|t′, X) =

(
1
2

)t′
p0 + pp1(

1
2

)t′−1
p0 + pp1

.
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Furthermore, the proof in Appendix B shows that these conditions are not only necessary
but also sufficient to pin down level 2 players’ optimal stopping periods. By induction on
the levels, it can be shown that no matter how sophisticated the players are, the behavior is
characterized by the solution of a sequential sampling problem.

Proposition 4 characterizes the level-dependent behavioral strategies. Alternatively, the
DCH solution can be characterized by the level-dependent stopping period (given observing
x−i), which is formally defined in Definition 2.

Definition 2 (Stopping Period). For any sequential two-person dirty-faces game and its

DCH level-dependent strategy profile σ, let σ̂k
i (x−i) be level k player i’s earliest period to

claim to have a dirty face conditional on observing x−i for any k ≥ 1 and i ∈ N . Specifically,

σ̂k
i (x−i) =

⎧⎨
⎩min

{
t′ : σk

i (t
′, x−i) = 1

}
, if ∃ t s.t. σk

i (t, x−i) = 1

T + 1, otherwise.

With Definition 2, Corollary 1 is a direct consequence of Proposition 4. If x−i = O, every
strategic level of players will know their face is dirty and claim to have a dirty face in period
1, viz. σ̂k

i (O) = 1 for every k ≥ 1. In contrast, if x−i = X, Corollary 1 shows that the
optimal stopping period is monotonically decreasing in k, implying that higher-level players
tend to claim in fewer periods.

Corollary 1. For any sequential two-person dirty-faces game, the DCH level-dependent strat-

egy profile σ can be equivalently characterized by level-dependent stopping periods. Moreover,

for any i ∈ N , we know

1. σ̂k
i (O) = 1 for any k ≥ 1,

2. σ̂1
i (X) = T + 1, and σ̂k

i (X) ≥ 2 for all k ≥ 2.

3. σ̂k
i (X) is weakly decreasing in k.

Proof. See Appendix B.

To summarize, I illustrate the DCH optimal stopping periods of level 2 and level infinity
players when seeing a dirty face, i.e., σ̂2

i (X) and σ̂∞
i (X). Because the set of dirty-faces games

is described by (δ, ᾱ), it is simply the unit square on the (δ, ᾱ)-plane. For the illustrative
purpose, I consider T = 5 and the distribution of levels follows Poisson(1.5), which is an
empirically regular prior according to Camerer et al. (2004).

The DCH stopping periods can be solved according to Proposition 4 and are plotted in
Figure 2. From the figure, we can find that DCH predicts it is possible for strategic players
to choose any stopping period in {2, 3, 4, 5, 6}, depending on the parameters ᾱ and δ. For
instance, level 2 players will claim in period 2 (red area) if and only if

ᾱ ≥
(
1
2
− 1

4
δ
)
p0(

1
2
− 1

4
δ
)
p0 + (1− δ)p1

=

(
1
2
− 1

4
δ
)
e−1.5(

1
2
− 1

4
δ
)
e−1.5 + (1− δ)1.5e−1.5

=
2− δ

8− 7δ
.
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In addition, DCH predicts the comparative statics that the optimal stopping period is
weakly decreasing in ᾱ and weakly increasing in δ for any level k ≥ 2. The intuition is that
when ᾱ is larger or δ is smaller, waiting becomes more costly, which causes the players to
claim earlier with a less certain belief about their own face type.

Figure 2: DCH stopping periods in sequential dirty-faces games for level 2 (left) and level ∞
players (right) as x−i = X where T = 5 and the distribution of levels follows Poisson(1.5).

5.2 DCH Solution for the Simultaneous Dirty-Faces Games

In contrast, the strategically equivalent simultaneous dirty-faces game is essentially a one-
period game where players simultaneously choose an action from the set S = {1, . . . , T +1}.
Action t ≤ T represents the plan to wait from period 1 to t−1 and claim in period t. Action
T +1 is the plan to always wait. In the simultaneous dirty-faces game, a mixed strategy for
player i is a mapping from the observed face type (x−i ∈ {O,X}) to a probability distribution
over the action set. The mixed strategy is denoted by

σ̃i : {O,X} → Δ(S).

Suppose (si, s−i) is the action profile. If si ≤ s−i, then the payoff for player i is computed
as the case where player i claims in period si; if si > s−i, then player i’s payoff is 0.

The DCH solution for one-stage games coincides with the standard CH solution. For
the sake of simplicity, I again assume that each player’s level is i.i.d. drawn from the
distribution p = (pk)

∞
k=0 where pk > 0 for all k. Level 0 players will uniformly randomize,

regardless of what they observe, so σ̃0
i (x−i) =

1
T+1

for all i, x−i. Since level k ≥ 1 players will

generically choose pure strategies, I slightly abuse the notation to use σ̃k
i (x−i) to denote the
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pure strategies.22

Proposition 5 is parallel to Proposition 4 that characterizes the DCH solution for the
simultaneous dirty-faces games. The intuition is similar to the analysis of sequential dirty-
faces games. When observing a clean face, players can figure out their face types immediately.
Hence, they will choose the strictly dominant strategy σ̃k

i (O) = 1 for all k ≥ 1. On the other
hand, when observing a dirty face, players have to make hypothetical inferences about their
face types and the other player’s level of sophistication.

Proposition 5. For any simultaneous two-person dirty-faces game, the level-dependent strat-

egy profile of the DCH solution satisfies that for any i ∈ N ,

1. σ̃k
i (O) = 1 for any k ≥ 1.

2. σ̃1
i (X) = T + 1. Moreover, for any k ≥ 2,

(1) σ̃k
i (X) ≥ 2,

(2) for any 2 ≤ t ≤ T − 1, σ̃k
i (X) ≤ t if and only if

ᾱ ≥
[
T+2−t
T+1

− T+1−t
T+1

δ
]
p0[

T+2−t
T+1

− T+1−t
T+1

δ
]
p0 + (1− δ)

∑k−1
j=1 pj

,

(3) σ̃k
i (X) ≤ T if and only if

ᾱ ≥
2

T+1
p0

2
T+1

p0 +
∑k−1

j=1 pj
.

Proof. See Appendix B.

The characterization is similar to Proposition 4. When seeing a dirty face, strategic
players will not choose 1, i.e., wait in period 1. Instead, they will claim in period t if and
only if the reward ᾱ is sufficiently high or the discount rate δ is low enough. However, the
critical level of ᾱ is different, indicating a violation of invariance under strategic equivalence.
Although DCH makes different quantitative predictions in the sequential and simultaneous
dirty-faces games, it makes a similar qualitative prediction that higher-level players tend to
claim earlier than lower-level players. This is proven in Corollary 2.

Corollary 2. For any simultaneous two-person dirty-faces game, the DCH level-dependent

strategy profile σ̃ satisfies for any i ∈ N and any k ≥ 2, σ̃k
i (X) is weakly decreasing in k.

22Specifically, for any t ∈ {1, 2, . . . , T, T + 1}, we use σ̃k
i (x−i) = t to denote the degenerated distribution:

σ̃k
i (x−i)(t) = 1, and σ̃k

i (x−i)(t
′) = 0 ∀ t′ 
= t.
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Proof. See Appendix B.

To conclude, I illustrate the DCH strategies for the simultaneous dirty-faces games of
level 2 and level infinity players when seeing a dirty face, i.e., σ̃2

i (X) and σ̃∞
i (X), with T = 5

and the prior distribution of levels being Poisson(1.5). The DCH strategies can be solved by
Proposition 5 and plotted in the unit square on the (δ, ᾱ)-plane.

From Figure 3, we can observe that the DCH solution for the simultaneous games is
similar to the DCH solution for the sequential games. In both games, DCH predicts that the
stopping periods are weakly decreasing in ᾱ and weakly increasing in δ for any level k ≥ 2,
although the boundaries of the areas are different.

Figure 3: DCH stopping periods in simultaneous dirty-faces games for level 2 (left) and level

∞ players (right) as x−i = X where T = 5, and the distribution of levels follows Poisson(1.5).

5.3 The Violation of Invariance under Strategic Equivalence

As discussed in the previous sections, DCH predicts that players might behave differently in
two strategically equivalent dirty-faces games. This result is driven by the fact that when the
cardinalities of the action sets differ, the behavioral strategies of level 0 players may not be
outcome-equivalent. This initiates a chain reaction that affects the behavior of higher-level
players because the DCH solution is solved recursively. In this subsection, I will examine
how changes in the cardinalities of the action sets influence behavior in dirty-faces games.

In the sequential game, the cardinality of each player i’s action set (conditional on each
x−i) is 2T , while in the simultaneous game, the cardinality is T + 1. This difference in
cardinalities leads to different behavior among level 0 players. For example, in the first
period, level 0 players will claim to have a dirty face with a probability of 1/2 in the sequential
game, while in the simultaneous game, they will claim with a probability of 1/(T + 1).
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Although this difference does not impact level 1 players, it significantly influences how level
2 (and more sophisticated) players update their beliefs regarding their own face types.

Remark 2. The standard CH solutions for the sequential and simultaneous dirty-faces games

coincide. Therefore, the difference of DCH between two versions of the game can alternatively

be interpreted as the difference between the DCH and the standard CH on sequential games.

To characterize this distinction, we can begin by partitioning the set of dirty-faces games
based on the stopping rules of each level in the sequential games, i.e., σ̂k

i (X). Specifically,
for any level k ≥ 1, we define Ek

t as the set of games in which level k players will claim no
later than period t when they observe a dirty face.23 That is,

(δ, ᾱ) ∈ Ek
t ⇐⇒ σ̂k

i (X) ≤ t under (δ, ᾱ).

The partition is visualized in Figure 2. For instance, E2
2 corresponds to the “2 (EQ)” area

in the left panel.24 Second, the set of dirty-faces games can be alternatively partitioned by
the stopping rules of each level in the simultaneous games, i.e., σ̃k

i (X). For any t ≥ 1 and
k ≥ 1, let Sk

t be the set of dirty-faces games where σ̃k
i (X) ≤ t, which is illustrated in Figure

3. Proposition 6 compares the DCH solutions in different versions of the game with the set
inclusions of Ek

t and Sk
t .

Proposition 6. Consider any T ≥ 2 and the set of two-person dirty-faces games. For any

level k ≥ 2, the following relationships hold.

1. Sk
T ⊂ Ek

T .

2. Sk
t ⊂ Ek

t for any [ln(T + 1)/ ln 2] ≤ t ≤ T − 1.

3. There is no set inclusion relationship between Sk
t and Ek

t for 2 ≤ t < [ln(T + 1)/ ln 2].

Moreover, for any i ∈ N , there exists δ(T, t) ∈ (0, 1) such that t = σ̂k
i (X) ≤ σ̃k

i (X) if

δ ≤ δ(T, t) and σ̂k
i (X) ≥ σ̃k

i (X) = t if δ > δ(T, t). Specifically,

δ(T, t) =
(2t − 2)(T + 1)− (t− 1)2t

(2t − 1)(T + 1)− t2t
.

Proof. See Appendix B.

Proposition 6 formally compares the DCH solutions of the sequential games and the
simultaneous games. First, Sk

T ⊂ Ek
T for any k ≥ 2 implies that when seeing a dirty face,

players are more likely to claim before the game ends in the sequential game than the
simultaneous game. Yet, this does not imply players will always claim earlier in the sequential

23Therefore, Corollary 1 implies for level 1 players, E1
t = ∅ for all t = 1, . . . , T and E1

T+1 = (0, 1)2; for

higher-level players, Ek
1 = ∅ for all k ≥ 1.

24Formally, when the distribution of levels follows Poisson(1.5), E2
2 is characterized by: (δ, ᾱ) ∈ E2

2 ⇐⇒
(2− δ)/(8− 7δ) ≤ ᾱ < 1, and 0 < δ < 1.
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games than the simultaneous games. The second and third results show that when the
horizon is long enough and the players are sufficiently patient, i.e., δ > δ(T, t), it is possible
for players to claim later in the sequential games. More surprisingly, the cutoff δ(T, t) is
independent of the level of sophistication and the prior distributions of levels, suggesting
that the differences between the two versions have the same impact on each level of players.

To illustrate this proposition, consider the case where T = 5 and the distribution of
levels follows Poisson(1.5). By Proposition 6, we can find that Sk

t ⊂ Ek
t for any k ≥ 2 and

3 ≤ t ≤ 5, while there is no set inclusion relation between Sk
2 and Ek

2 . These two sets for
k = 2 and ∞ are plotted in Figure 4. By Proposition 4 and Proposition 5, E2

2 and S2
2 can

be characterized by:

(δ, ᾱ) ∈ E2
2 ⇐⇒ ᾱ ≥

(
1
2
− 1

4
δ
)
e−1.5(

1
2
− 1

4
δ
)
e−1.5 + (1− δ)1.5e−1.5

=
2− δ

8− 7δ
,

(δ, ᾱ) ∈ S2
2 ⇐⇒ ᾱ ≥

(
5
6
− 2

3
δ
)
e−1.5(

5
6
− 2

3
δ
)
e−1.5 + (1− δ)1.5e−1.5

=
5− 4δ

14− 13δ
.

The boundaries of E2
2 and S2

2 intersect at δ = 0.8, suggesting that when δ < 0.8, level 2
players tend to claim earlier in the sequential games, and vice versa. By similar calculations,
it can be shown that the boundaries of E∞

2 and S∞
2 also intersect at δ = 0.8, illustrating that

the cutoff δ(5, 2) is the same for every level.

Lastly, as the maximum horizon T increases, the cardinalities of the action sets in the
sequential and simultaneous games become increasingly distinct. Consequently, the behavior
of level 0 players diverges even further between the sequential and simultaneous games. As
T → ∞, Proposition 6 implies for any period t ≥ 2 and level k ≥ 2, Sk

t and Ek
t do not have

set inclusion relationship, suggesting that higher-level players do not definitely learn their
face types earlier in one game or another. Their behavior depends on the parameters (δ, ᾱ).
The result is formally presented in Corollary 3.

Corollary 3. When T → ∞, for any t ≥ 2 and k ≥ 2, there is no set inclusion relationship

between Sk
t and Ek

t . Specifically, if δ < δ
∗
(t), then t = σ̂k

i (X) ≤ σ̃k
i (X); and if δ > δ

∗
(t),

then σ̂k
i (X) ≥ σ̃k

i (X) = t where

δ
∗
(t) = [2t − 2]/[2t − 1].

Proof. See Appendix B.

When there are more than two players, DCH predicts a bigger difference between the two
versions in the sense that the boundaries between the sequential and simultaneous games
are further apart. For the purpose of illustration, in Appendix C, I characterize the DCH
solutions of three-person three-period games and find that players tend to learn their face
types earlier in the sequential games.
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Figure 4: The set of dirty-faces games where σ̃k
i (X) = 2 or σ̂k

i (X) = 2 for k = 2 (left) and

k = ∞ (right) where T = 5 and the distribution of levels follows Poisson(1.5).

6 Experimental Design, Hypotheses and Procedures

As demonstrated in the previous section, DCH makes various predictions about how people’s
behavior would vary with the timing (sequential vs. simultaneous) and the payoff structures
of the dirty-faces games. To test these predictions, I conduct a laboratory experiment on
two-person dirty-faces games tailored to evaluate the DCH solution.

Specifically, the primary goal of the experiment is to measure the violation of invari-
ance under strategic equivalence and understand how it interacts with the payoff structures.
Furthermore, the variation of the payoff structures provides the opportunity to explore the
sensitivity of behavior to payoffs in both the sequential and simultaneous versions of the
game. Lastly, the stylized facts found in this experiment will help identify the strengths and
the weaknesses of the DCH solution and alternative theories.

The theoretical analysis of DCH suggests that the main challenge in designing the exper-
iment lies in the fact that the magnitude of the difference between the two versions depends
on the payoff structure and the distribution of levels, which remains unknown before the
experiment is run. To address this, I first estimate the distribution of levels using the dirty-
faces game experimental data collected by Bayer and Chan (2007), and then choose the game
parameters to maximize the diagnosticity based on the calibration results.

6.1 Calibration

The dirty-faces game experiment by Bayer and Chan (2007) is implemented under the direct
response method with two treatments: two-person two-period games and three-person three-
period games. In both treatments, the prior probability of having a dirty face is 2/3, the
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discount factor δ is 4/5, and the reward α is 1/4.25 I will focus on the data from two-person
games because this environment is the closest to my experiment.26 A detailed analysis of
the data can be found in Appendix D.

There are 42 subjects (from two sessions) in the two-person treatment of Bayer and Chan
(2007). At the beginning of the experiment, the computer randomly matches two subjects
into a group. Subjects play 14 rounds of dirty-faces games against the same opponent, with
the face types in each round being independently drawn according to the prior probabilities.
In each round, an announcement is made on the screen to both subjects if there is at least
one person having a dirty face (type X). At the end of each round, subjects are told their
own payoffs from that round and they are paid with the sum of the earnings of all 14 rounds.

In the calibration exercise, I exclude the data from the situation where there is no pub-
lic announcement27, resulting in 690 observations at the information set level. Following
previous notations, I use (t, x−i) to denote the situation where subject i sees type x−i at
period t. Table 1 reports the empirical frequency of choosing claim at each information
set, revealing that the behavior is inconsistent with the prediction of standard equilibrium
theory, particularly when observing a dirty face.

Following the literature on the cognitive hierarchy theory, I assume the prior distribution
of levels follows a Poisson distribution. In the Poisson-DCH model, each individual i’s level
is identically and independently drawn from (pk)

∞
k=0 where pk = e−ττ k/k! for all k ∈ N0 and

τ > 0. Once the distribution of levels is specified, DCH makes a precise prediction about
the aggregate choice frequency at each information set.28 The rationale for estimating the
Poisson-DCH model is to find τ , estimated using the maximum likelihood method, which
minimizes the difference between the choice frequencies predicted by DCH and the empirical
frequencies. See Appendix D.2 for the details on the construction of the likelihood function.

It is worth remarking that since τ is the mean (and variance) of the Poisson distribution,
the economic interpretation of τ is as the average level of sophistication among the popu-
lation. Additionally, another property of the Poisson-DCH model is that as τ → ∞, the
aggregate choice frequencies predicted by DCH converge to the equilibrium predictions. This

25In Bayer and Chan (2007), the payoff of correctly claiming a dirty face is 100 ECU (experimental

currency unit) and the penalty of wrongly claiming a dirty face is −400 ECU. Therefore, the relative reward

of correctly claiming a dirty face α = 1/4 can be obtained by normalizing the payoffs.
26Weber (2001)’s dataset consists of two experiments where experiment 2 is comparable with Bayer and

Chan (2007)’s design. However, there are much fewer observations in this experiment than Bayer and Chan

(2007) and there is no discount factor, making this dataset less ideal for the purpose of calibration.
27If there is no public announcement, it is common knowledge that both subjects’ faces are clean.
28The aggregate choice frequency can be constructed as follows. Consider any game, any player i, any

information set Ii, and any available action ci at this information set. Let Pk(ci|Ii) represent the probability
of level k player i choosing ci at Ii. Additionally, let f(k|Ii, τ) be the posterior distribution of levels

at information set Ii. The choice frequency predicted by DCH for action ci at information set Ii is the

aggregation of choice probabilities from all levels, weighted by the proportion f(k|Ii, τ):

D(ci|Ii, τ) ≡
∞∑
k=0

f(k|Ii, τ)Pk(ci|Ii, τ).
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provides a second interpretation of τ : the higher the value of τ , the closer the predictions
are to the equilibrium. See Proposition 7 in Appendix B for the proof.

Table 1: Estimation Results for Two-Person Dirty-Faces Games

(t, x−i) N σ∗
i (t, x−i) σ̂i(t, x−i) DCH

Standard

CH

σi(t, x−i) (1, O) 123 1.000 0.943 0.859 0.791

(2, O) 6 1.000 0.500 0.500 0.500

(1, X) 391 0.000 0.210 0.141 0.104

(2, X) 170 1.000 0.618 0.503 0.477

Parameter τ 1.269 1.161

S.E. (0.090) (0.095)

Fitness LL -360.75 -381.46

AIC 723.50 764.91

BIC 728.04 769.45

Vuong Test 6.517

p-value < 0.001

Note: The equilibrium and the empirical frequencies of C at each information set

are denoted as σ∗
i and σ̂i, respectively. There are 294 games (rounds × groups).

Table 1 reports the estimation results of the Poisson-DCH model. Additionally, I estimate
the standard Poisson-CH model by Camerer et al. (2004) as a benchmark.29 Comparing
the fitness of these models, I find that the log-likelihood of DCH is significantly higher
than standard CH (Vuong test p-value < 0.001), suggesting that DCH outperforms the
standard CH in capturing the empirical pattern. Besides, the estimated τ of Poisson-DCH
falls within the range of commonly observed τ in various environments, with a value of 1.269.
In the following, I will design the experiment by treating Poisson(1.269) as the true prior
distribution of levels.

6.2 Games and Hypotheses

In this experiment, I employ a between-subject design where each participant is assigned to
either the “sequential treatment” (using the direct-response method) or the “simultaneous
treatment” (using the strategy method). To observe potential heterogeneity in stopping
periods, I set the maximum length to be T = 5 for both treatments.

Assessing whether the difference between the two treatments is challenging because level 1
players—the most common types of players according to the calibration result—will behave

29The logit-AQRE proposed by McKelvey and Palfrey (1998) is also estimated. The likelihood scores

between Poisson-DCH and logit-AQRE are not significantly different. See Appendix D for the details.

27



the same under the two treatments. When observing a dirty face, they will always wait
in both the sequential and simultaneous games. Therefore, to diagnose the predictivity
of DCH, the game parameters are chosen to make level 2 players behave differently under
different representations. The behavioral change of level 2 players (around 22.6% based on
the calibration) is anticipated to yield a sizable treatment effect.

Figure 5: (Left) The set of dirty-faces games where at information set (2, X), level 2 players

behave differently in the two versions when T = 5 and the distribution of levels follows Pois-

son(1.269). (Right) The two diagnostic games and the four control games in the experiment.

According to Proposition 6, DCH predicts the existence of a set of dirty-faces games in
which level 2 players exhibit different behavior in the sequential and simultaneous games
at information set (2, X). The left panel of Figure 5 illustrates this set of games when the
distribution of levels follows Poisson(1.269). From this figure, we can observe the following:

(1) For δ < 0.8, there is a range of games (red area) where level 2 players choose to claim
at (2, X) in the sequential games but not in the simultaneous games.

(2) For δ = 0.8, level 2 (and more sophisticated) players behave the same in the sequential
and simultaneous games.

(3) For δ > 0.8, there is a range of games (blue area) where level 2 players choose to claim
at (2, X) in the simultaneous games but not in the sequential games.

Guided by DCH, I consider the following six dirty-faces games (δ, ᾱ) as depicted in the right
panel of Figure 5.

The set of games consists of two diagnostic games where (δ, ᾱ) = (0.6, 0.45) and (0.95, 0.8)
and four control games where (δ, ᾱ) = (0.6, 0.8), (0.8, 0.45), (0.8, 0.8) and (0.95, 0.45). DCH
predicts in the diagnostic games, level 2 players will behave differently in two treatments,
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but not in the control games. This variation allows us to examine the interplay between the
violation of invariance under strategic equivalence varies with the payoff structures.

DCH makes several predictions about the comparative statics. First, by Proposition 4
and 5, DCH predicts that no matter in sequential games or in simultaneous games, when
observing a dirty face, players will choose to claim earlier when δ is smaller or ᾱ is higher.
An implication is that in both treatments, at information set (2, X), players are more likely
to claim when δ decreases or ᾱ increases.

Hypothesis 1. In both the sequential and simultaneous treatments, at information set

(2, X), the empirical frequency of choosing C is higher when δ decreases or ᾱ increases.

Besides, DCH makes a specific prediction regarding the relative magnitude of the treat-
ment effect among these six games. First, in the DCH solution, part of the treatment effect
is attributed to the difference in level 0 players’ strategies between the two treatments. In
the sequential games, level 0 players uniformly randomize at every information set, resulting
in a conditional probability to claim at (2, X) is 1/2. Yet, in the simultaneous games, level 0
players uniformly randomize across all reduced contingent strategies, leading to a conditional
probability to claim at (2, X) is 1/5. In other words, the difference in level 0 players’ strate-
gies generates a mechanical effect that increases the likelihood of players choosing to claim
at (2, X) in the sequential games. Because in all four control games, strategic players behave
the same at (2, X) under two representations, DCH predicts the magnitude of the violation
of invariance under strategic equivalence will be similar in the control games. Particularly, in
the game (δ, ᾱ), the treatment effect can be quantified by computing the difference between
the conditional probabilities of choosing to claim at (2, X) in the sequential version and the
simultaneous version. This difference is denoted by Δ(δ, ᾱ).30

Second, in the game where (δ, ᾱ) = (0.6, 0.45), level 2 players will claim at (2, X) in
the sequential version but not in the simultaneous version. As a result, DCH predicts
that the difference between the two treatments in this diagnostic game will be stronger
compared to the effect observed in the control games. On the contrary, in the game where
(δ, ᾱ) = (0.95, 0.8), level 2 players will claim at (2, X) in the simultaneous version but not
in the sequential version. This offsets the mechanical effect caused by level 0 players. The
expected differences based on the calibration results are summarized below.

Hypothesis 2. Based on the calibration results, the expected differences are:

Δ(0.6, 0.45)

=

31.15%

> Δ(0.6, 0.8)

=

7.4%

= Δ(0.8, 0.8)

=

7.4%

≈ Δ(0.8, 0.45)

=

4.82%

≈ Δ(0.9, 0.45)

=

3.26%

> Δ(0.95, 0.8)

=

−18.93%

.

30In the sequential version, the observed conditional probability of claiming at (2, X) is simply the empirical

σi(2, X). For the simultaneous version, the conditional probability can be computed from the empirical

σ̃i(X) by σ̃i(2, X) ≡ Pr(σ̃i(X) = 2)/
∑6

t=2 Pr(σ̃i(X) = t). Therefore, the treatment effect is quantified by

the (empirical) difference between σi(2, X) and σ̃i(2, X), i.e., Δ ≡ σi(2, X)− σ̃i(2, X).
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6.3 Experimental Procedures

The experimental sessions were conducted at the Experimental Social Science Laboratory
(ESSL) located on the campus of the University of California, Irvine. Subjects were recruited
from the general undergraduate population, from all majors. Experiments were conducted
through oTree software (Chen et al., 2016). I conducted 10 sessions with a total of 118
subjects. No subject participated in more than one session. Each session lasted around 45
minutes, and the average earnings was $33.36, including the $10 show-up fee (max $52 and
min $10).

Subjects were given instructions at the beginning and the instructions were read aloud.
Subjects were allowed to ask any questions during the whole instruction process. The ques-
tions were answered so that every one can hear. Afterwards, they had to answer several
comprehension questions on the computer screen in order to proceed. The instructions for
both the sequential treatment and the simultaneous treatments are identical except for the
instructions about the choices and the feedback after each game. The instructions for both
treatments can be found in Appendix F.

Table 2: List of Game Parameters Implemented in the Experiment

Game Parameters Normalized Probabilities

δ α p ᾱ one X, one O two X

Diagnostic Game 1 0.60 0.225 0.67 0.45 0.25 0.50

Diagnostic Game 1’ 0.60 0.150 0.75 0.45 0.20 0.60

Diagnostic Game 2 0.95 0.400 0.67 0.80 0.25 0.50

Diagnostic Game 2’ 0.95 0.267 0.75 0.80 0.20 0.60

Control Game 1 0.60 0.400 0.67 0.80 0.25 0.50

Control Game 1’ 0.60 0.267 0.75 0.80 0.20 0.60

Control Game 2 0.80 0.225 0.67 0.45 0.25 0.50

Control Game 2’ 0.80 0.150 0.75 0.45 0.20 0.60

Control Game 3 0.80 0.400 0.67 0.80 0.25 0.50

Control Game 3’ 0.80 0.267 0.75 0.80 0.20 0.60

Control Game 4 0.95 0.225 0.67 0.45 0.25 0.50

Control Game 4’ 0.95 0.150 0.75 0.45 0.20 0.60

Each session comprised 12 games with different (δ, α, p) configurations, as summarized
in Table 2.31 The sequence of these games was randomized, and in each game, subjects were
randomly paired into groups. The draws for player types were independent, and the protocol
was common knowledge. To prevent any framing effect, the “dirty face” and the “clean face”
were labelled as “red” and “white” in the instruction, respectively. Besides, the actions were
labelled as “I’m red” and “wait.” Finally, to avoid situations where both faces are clean, the

31Notice that the parameters are selected such that each (δ, ᾱ) is played twice.
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probabilities were normalized to ensure that having two clean faces was impossible.32

After observing the other’s face type, subjects were asked to simultaneously choose their
actions. In the sequential treatment, subjects simultaneously chose either “I’m red” or
“wait.” If both subjects chose to wait, the game would proceed to the next period and
they were asked to choose again. The game ended after the period where some one chose
“I’m red” or after period 5. On the other hand, in the simultaneous treatment, subjects
simultaneously chose one of the six plans (the period to choose “I’m red” or always wait)
and the plans were implemented by the computer. At the end of each match, the subjects
were informed of their own payoffs, the true types and the histories of the game.33

Lastly, subjects were paid in cash based on their total points earned from the 12 games.
The highest possible earnings of each game was 100 points.34 The conversion rate was two
US dollars for every 100 points. Following previous dirty face game experiments (Weber,
2001; Bayer and Chan, 2007), each subject was provided an endowment of 900 points at the
beginning of the experiment to prevent early bankruptcy, and they would only receive the
show-up fee if the total point is negative.

7 Experimental Results

7.1 Aggregate-Level Analysis

The data includes two treatments (sequential and simultaneous) with 60 subjects in the
sequential treatment and 58 subjects in the simultaneous treatment. Each subject partic-
ipates in 12 games, resulting in 1024 observations for the sequential treatment and 1979
observations for the simultaneous treatment at the information set level.35 Figure 6 provides
a comprehensive overview of the data by plotting the distribution of stopping periods in both
treatments, aggregating across all payoff configurations. This analysis considers scenarios
where players encounter either a clean face or a dirty face.36

32For example, in the game with p = 2/3, subjects were informed that the probability of one dirty face

and one clean face was 1/4, and the probability of two dirty faces was 1/2. Therefore, if the other’s face

was clean, the subject could infer that his own face was dirty. Conversely, if the other’s face was dirty, the

subject’s belief about his own face being dirty was 2/3.
33To control for the amount of feedback in both treatments, in the simultaneous treatment, subjects would

learn the other’s exact plan if the other chose “I’m red” earlier or at the same period; otherwise, they would

be told that the other subject was later than you.
34That is, a correct claim in the first period would yield 100 points, while an incorrect claim in the first

period would result in a penalty of 100/α points.
35For the simultaneous treatment, the choice data at the information set level are implied by the contingent

strategies. For instance, choosing the contingent strategy “claim at period 4” implies that the subject will

wait from period 1 to period 3 and claim in period 4.
36In the sequential treatment, the cumulative density of stopping periods is derived from the choice prob-

ability at each information set. For example, the probability of stopping in period 1 corresponds to the

empirical frequency of choosing C. Similarly, the probability of stopping in period 2 is the product of the
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A few key observations emerge from this figure. First, when players see a clean face, their
behavior is consistent across both treatments. A majority of players seem to understand that
their face is dirty and claim in period 1. Second, when players encounter a dirty face, it is
evident that the distribution of stopping periods in the simultaneous treatment first-order
stochastically dominates the distribution in the sequential treatment, implying that players
are more inclined to claim earlier in the sequential treatment. Furthermore, a striking
pattern in the right panel of Figure 6 is the prevalence of the “always wait” strategy in the
simultaneous treatment, chosen by approximately 36.72% of participants. This is in stark
contrast to the sequential treatment, where the proportion of participants employing the
“always wait” strategy is only about 13.88%.
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Figure 6: The CDFs of the stopping periods when players see either a clean face (left panel)

or a dirty face (right panel). The blue solid and the red dashed are the distributions in the

sequential and the simultaneous treatments, respectively.

Focusing on data from the first two periods, Figure 7 displays the empirical frequencies
of choosing C at each information set during the first two periods. From the figure, it’s
evident that at information set (1, O), the behavior in the sequential treatment is not sig-
nificantly different from the simultaneous treatment (Ranksum test p-value = 0.4423). In
both treatments, the frequencies of C exceed 80%, indicating that the majority of subjects
understand that choosing C in the first period is a strictly dominant strategy.

Despite the limited number of observations at information set (2, O), it provides valuable
insights into the behavioral strategies of level 0 players. This is because, from the perspective
of DCH, information set (2, O) is reached only when a player is level 0. As depicted in Figure
7, the frequencies of C in the sequential and simultaneous treatments are 43.8% and 25%,
respectively.37 These results align with DCH, which predicts that the frequencies of C in the

empirical frequency of choosing W in period 1 and the empirical frequency of choosing C in period 2. The

probabilities for other stopping periods are calculated in a similar manner.
37A similar pattern is also found in Bayer and Chan (2007). In their dataset, the frequency of choosing C
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sequential and simultaneous treatments should be 50% and 20%, respectively. This suggests
that uniform randomization is a reasonable specification for level 0 players’ behavior.
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Figure 7: The empirical frequencies of C and 95% CI at each information set in period 1 and

2, aggregating across all configurations. Each panel represents an information set. The blue

bars are the frequencies of the sequential treatment and the red bars are the frequencies of

the simultaneous treatment.

On the other hand, when players see a dirty face, they need to make inferences about their
own faces either from the opponent’s actions or hypothetically. However, regardless of the
treatment, claiming in period 1 is strictly dominated. Comparing the empirical frequencies of
choosing C at information set (1, X), we find that players in the simultaneous treatment are
less likely to choose C (Ranksum test p-value = 0.0641). This observation is consistent with
DCH, as level 0 players in the simultaneous treatment are less likely to claim at information
set (1, X). Furthermore, a strong treatment effect is detected at period 2. The frequency
of choosing C at information set (2, X) in the sequential treatment is 60.00%, while the
frequency in the simultaneous treatment is 22.28% (Ranksum test p-value < 0.0001).

Result 1. (1) When observing a clean face in both treatments, over 80% of the subjects
choose C in period 1, the strictly dominant strategy. Additionally, the behavior at information

at information set (2, O) is exactly 50%, which coincides with the prediction of DCH.
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set (2, O) aligns with the prediction of DCH about level 0 players’ behavior. (2) When
players observe a dirty face, a significant difference emerges: they are more likely to claim at
information set (2, X) in the sequential treatment. Furthermore, the most prevalent strategy
in the simultaneous treatment when players see a dirty face is to “always wait.”

The supplementary analysis can be found in Appendix E.1. In the following, I will focus
on information set (2, X), where a strong treatment effect is found, and I will test two
hypotheses related to the sensitivity of behavior to the payoff structures and the interplay
between the payoff structures and the magnitude of the effect.

7.2 The Payoff Effect

Focusing on information set (2, X), DCH predicts that in both treatments, players’ behavior
is sensitive to the payoff configurations. Specifically, DCH predicts that the empirical fre-
quencies of choosing C at information set (2, X) will exhibit a monotonic relationship with
δ and ᾱ. To test this prediction, I perform Kruskal-Wallis ranksum tests on the sequential
and simultaneous treatments separately.
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Figure 8: The empirical frequencies of C and 95% CI at information set (2, X) in each

payoff configuration (δ, ᾱ). The data from the sequential and the simultaneous treatments

are plotted in the left and the right panel, respectively.

In the sequential treatment, we find that the null hypothesis is marginally rejected
(χ2(5) = 9.856, p-value = 0.0794), suggesting that behavior is influenced by variations
in payoff structures. Furthermore, we can observe from the left panel of Figure 8 that the
frequency of choosing C weakly increases with ᾱ for any δ. This monotonic pattern aligns
with the prediction of DCH.
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Similarly, the null hypothesis is rejected for the simultaneous treatment (χ2(5) = 11.831,
p-value = 0.0372), indicating that behavior in the simultaneous treatment significantly varies
with the payoff parameters. Once again, we can observe from Figure 8 that for each δ, the
frequency of choosing C weakly increases with ᾱ, aligning with DCH.

Result 2. The behavior at information set (2, X) in both treatments significantly varies with
payoffs, aligning with the qualitative predictions of DCH.

7.3 The Violation of Invariance under Strategic Equivalence

The behavior in both treatments significantly varies with the payoff structures. Additionally,
the difference in behavior between the two treatments also varies with the payoff structures.
This variability allows us to examine the predictions of DCH.

First, the left panel of Figure 9 displays the joint distribution of the empirical frequencies
of choosing C at (2, X) between the two treatments, where each point represents one payoff
configuration. From the figure, we can observe that all six points are below the 45-degree
line, implying that players are more likely to claim at (2, X) in the sequential treatment than
in the simultaneous treatment, regardless of the payoff configuration.
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Second, for each payoff configuration (δ, ᾱ), I calculate Δ(δ, ᾱ), which represents the
difference in the empirical frequencies of choosing C at (2, X) between both treatments.
The results are shown in the right panel of Figure 9. Focusing on the diagnostic game
where (δ, ᾱ) = (0.6, 0.45), we observe a significant treatment effect with a magnitude of
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Δ(0.6, 0.45) = 30.77% (95% CI = [15.90%, 45.64%], p-value = 0.001). This is highly consis-
tent with the prediction of the calibrated DCH.

Furthermore, when focusing on the four control games, we find that the magnitudes of
the treatment effects are similar in these games, which aligns with the qualitative predictions
of DCH. However, these magnitudes are much stronger than the predictions of calibrated
DCH, ranging from Δ(0.95, 0.45) = 30.26% (95% CI = [13.85%, 46.68%], p-value = 0.002)
to Δ(0.6, 0.8) = 42.88% (95% CI = [6.73%, 79.03%], p-value = 0.025). Lastly, in the sec-
ond diagnostic game with (δ, ᾱ) = (0.95, 0.8), DCH predicts a negative treatment effect
based on the calibration results. However, the observed empirical difference for this game is
Δ(0.95, 0.8) = 42.94% (95% CI = [18.17%, 67.71%] and p-value = 0.004), which is inconsis-
tent with the quantitative prediction of the calibrated DCH.

Result 3. In the diagnostic game with (δ, ᾱ) = (0.6, 0.45), the frequency of C at informa-
tion set (2, X) is 30.77% higher in the sequential treatment compared to the simultaneous
treatment. In the diagnostic game with (δ, ᾱ) = (0.95, 0.8), the difference is 42.94%. Fur-
thermore, treatment effects are detected in all control games, with magnitudes exceeding the
predictions of calibrated DCH.

In summary, when analyzing the interplay between the violation of strategic equivalence
and payoff structures, we observe that while calibrated DCH captures some qualitative pat-
terns, the observed magnitudes are significantly larger. This suggests that the observed
behavior might result from both the violation of mutual consistency and other behavioral
biases. To delve deeper into this aspect, in the next subsection, I will compare DCH with
other behavioral models that relax other requirements of the standard equilibrium theory.

7.4 Structural Estimation and Model Comparison

DCH relaxes the requirement of mutual consistency in sequential equilibrium while still
adhering to the requirements of best response and Bayesian inference. Can the empirical
pattern be better explained by relaxing other requirements? To assess the relaxation of
two other requirements, I estimate the “Quantal Cursed Sequential Equilibrium (QCSE),”38

which is a hybrid model combining AQRE and CSE, thereby relaxing the requirements of
best response and Bayesian inference.

QCSE assumes that players are unable to fully understand how other players’ actions
depend on their private information.39 In particular, for any strategy profile σ, any player i
and any information set Ii = (θi, h

t−1), the average behavioral strategy of player −i is

σ̄−i

(
at−i|θi, ht−1

)
=
∑
θ′−i

μi(θ
′
−i|θi, ht−1)σ−i

(
at+1
−i |θ′−i, h

t−1
)
.

38See Appendix E.2 for a detailed description of the model.
39In the context of the dirty-faces game, QCSE assumes that players do not fully recognize how the other

player’s actions depend on the observed face type.
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In QCSE, there is a parameter χ ∈ [0, 1]. For any χ, χ-cursed player i believes the other
players are playing the behavioral strategy:

σχ
−i(a

t
−i|θ, ht−1) = χσ̄−i(a

t
−i|θi, ht−1) + (1− χ)σ−i(a

t
−i|θ−i, h

t−1),

which is a linear combination between the average behavioral strategy (with χ weight) and
the true behavioral strategy (with 1− χ weight). When χ = 0, players have correct percep-
tions about others’ behavioral strategies. On the other extreme, when χ = 1, players fail
to understand the correlation between others’ actions and types. As the game progresses,
players update their beliefs via Bayes’ rule, believing that other players are using σχ

−i in-
stead of the true behavioral strategy σ−i. As shown by Fong et al. (2023a), at any history
ht = (ht−1, at), player i’s χ-cursed belief is

μχ
i (θ−i|θi, ht) = χμχ

i (θ−i|θi, ht−1) + (1− χ)

[
μχ
i (θ−i|θi, ht−1)σ−i(a

t
−i|θ−i, h

t−1)∑
θ′−i

μχ
i (θ

′
−i|θi, ht−1)σ−i(at−i|θ′−i, h

t−1)

]
,

which is a linear combination between the belief from the previous period (with χ weight)
and the Bayesian belief (with 1− χ weight).

Moreover, in QCSE, players make quantal responses rather than best responses. In
particular, players make make logit quantal responses, and the precision is determined by a
parameter λ ∈ [0,∞). Consider any information set Ii. For any ai ∈ Ai(Ii), let ūai denote
the continuation value of ai in QCSE. The choice probability of ai is given by a multinomial
logit distribution:

σi(ai|Ii) =
eλūai∑

a′∈Ai(Ii) e
λūa′

.

When λ = 0, players become insensitive to the payoffs, behaving like level 0 players. As λ
increases, players’ behavior becomes more sensitive to the payoffs. In the limit as λ → ∞,
players become fully rational and make best responses. In summary, QCSE relaxes the
requirements of best response and Bayesian inferences with two parameters, λ ∈ [0,∞) and
χ ∈ [0, 1].

Remark 3. When χ = 0, QCSE reduces to AQRE, and as λ → ∞, it reduces to CSE.

To enable a fair comparison between DCH and QCSE, I estimate a Quantal DCH model
(QDCH) where the prior distribution of levels follows Poisson(τ), and all levels (k ≥ 1) of
players make logit quantal responses instead of best responses. In essence, Quantal DCH
relaxes the requirements of best response and mutual consistency with two parameters,
λ ∈ [0,∞) and τ ∈ [0,∞). A description of QDCH can be found in Appendix E.2.

Remark 4. When λ → ∞, QDCH reduces to DCH.

In addition to QDCH and QCSE, I also estimate DCH and AQRE, which are nested
within QDCH and QCSE, respectively.40 These models are estimated using maximum likeli-
hood estimation, and the construction of the likelihood functions can be found in Appendix
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Table 3: Estimation Results for the Sequential and the Simultaneous Treatment

Sequential Treatment Simultaneous Treatment

QDCH DCH QCSE AQRE QDCH DCH QCSE AQRE

Parameters λ 12.371 5.672 5.484 1774.5 8.740 3.839

S.E. (2.062) (0.821) (0.426) — — (0.452)

τ 1.309 0.277 0.388 0.389

S.E. (0.220) (0.043) — (0.015)

χ 0.101 1.000

S.E. (0.364) —

Fitness LL -634.72 -671.78 -648.36 -648.40 -1100.76 -1100.76 -1167.68 -1211.08

AIC 1273.43 1345.57 1300.73 1298.80 2205.51 2203.52 2339.37 2424.16

BIC 1283.29 1350.50 1310.59 1303.73 2214.61 2208.07 2348.46 2428.70

E.2. Table 3 presents the estimation results for both the sequential and simultaneous treat-
ments.41 The comparison between the models is summarized in Figure 10.

Comparing these four models, we first observe that in both the sequential and simultane-
ous treatments, QDCH fits the data significantly better than QCSE (Sequential: Vuong Test
p-value = 0.0056; Simultaneous: Vuong Test p-value < 0.0001). Without relaxing the best
response requirement, DCH’s fitness is significantly better than QCSE in the simultaneous
treatment (Vuong Test p-value < 0.0001). However, in the sequential treatment, QCSE fits
the data significantly better than DCH (Vuong Test p-value = 0.0245).

QDCH outperforms other models in both treatments, indicating that the observed vi-
olation of strategic equivalence is primarily due to the relaxation of mutual consistency.
However, there is evidence of the violation of other behavioral biases. In the sequential
treatment, a significant quantal response effect is observed (QDCH vs. DCH: Likelihood
Ratio Test p-value < 0.0001), but not in the simultaneous treatment (Likelihood Ratio Test
p-value = 0.9340). Furthermore, in the simultaneous treatment, a significant cursed effect
is detected (χ̂ = 1.000, p-value < 0.0001), but not in the sequential treatment (χ̂ = 0.101,
p-value = 0.7846). This suggests that, players struggle to accurately understand how other
players’ actions depend on their private information and update their beliefs accordingly in
the simultaneous treatment, but not in the sequential treatment.

Lastly, it’s worth noting that DCH estimates a significantly lower τ̂ in the sequential
treatment compared to the simultaneous treatment (Sequential: τ̂ = 0.277; Simultaneous:
τ̂ = 0.389). In contrast, when introducing quantal responses into DCH, we observe a sig-
nificantly higher τ̂ in the sequential treatment compared to the simultaneous treatment
(Sequential: τ̂ = 1.309; Simultaneous: τ̂ = 0.389). This suggests that in the simultane-
ous treatment, all of the randomness can be attributed to level 0 behavior, whereas in the
sequential treatment, some randomness is attributable to the mistakes of higher-level players.

40CSE cannot be estimated independently as it lacks an error structure in the model.
41In the simultaneous treatment, due to the flatness of the log-likelihood functions for both QDCH and

QCSE at the MLE estimates, the square roots of the inverse Hessian matrices are not well-defined.
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Figure 10: Negative log-likelihood of each model. The likelihood ratio test is performed when

comparing two nested models, while the Vuong test is performed when comparing QDCH

and DCH with QCSE.

Result 4. (1) In both the sequential and simultaneous treatments, QDCH outperforms
QCSE in explaining the data. Additionally, in the sequential treatment, the fitness of DCH
is not significantly different from QCSE and AQRE. In the simultaneous treatment, DCH
significantly outperforms QCSE and AQRE. (2) In both treatments, there is evidence of the
failure of Bayesian inferences. Additionally, in the sequential treatment, evidence of quantal
responses is present, while it is not observed in the simultaneous treatment.

7.5 The Analysis of Reaction Times

Besides the choice data, it is also interesting to see how long it takes individuals to make
decisions. There is evidence suggesting that people tend to take an action faster if they adopt
some simple decision-making heuristics or have strong preferences over the action (see, for
example, Rubinstein (2007); Chabris et al. (2009); Konovalov and Krajbich (2019); Lin et
al. (2020) and Gill and Prowse (2023)).

Focusing on the case where players observe a dirty face, Figure 11 presents two panels.
The left panel illustrates the distribution of reaction times at each period of the sequential
games. The right panel displays the distribution of reaction times for each stopping strategy
in the simultaneous games. In the sequential treatment, we can observe that the reaction
times at each period are significantly different (Kruskal-Wallis ranksum test: χ2(4) = 32.519
and p-value = 0.0001). Moreover, the reaction time decreases as the game progresses to later
periods, dropping from 11.29 seconds in period 1 to 7.66 seconds in period 5. Combined
with the low frequencies of C in later periods (around 21.43%), we can conclude that players
quickly decide to wait in later periods.
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Figure 11: (Left) The reaction time in the sequential treatment. The scatterplot of reaction

time conditional on the current period is shown by the blue dots. The mean and the 95%

CIs are overlaid. (Right) The reaction time in the simultaneous treatment when seeing a

dirty face. The scatterplot of reaction time conditional on the choice of the stopping periods

is shown by the red dots. The mean and the 95% CIs are overlaid.

In the simultaneous treatment, we once again observe that the reaction times for each
stopping strategy are significantly different (Kruskal-Wallis ranksum test: χ2(5) = 54.291
and p-value = 0.0001). The right panel of Figure 11 reveals a monotonic pattern: players
take longer to decide to claim in later periods, with average reaction time of 11.93 seconds
for period 1 and 23.34 seconds for period 5. However, it only takes players approximately
14.42 seconds to decide to always wait.

The empirical patterns from both treatments provide suggestive evidence that the heuris-
tic of choosing to “always wait” differs from the heuristic of claiming at a specific period.
This finding aligns with the rationale of DCH—level 1 players will always wait upon seeing a
dirty face, regardless of the payoff configurations. Conversely, higher-level strategic players
will make inferences to determine their stopping strategies. Lastly, the observed monotonic
increase in reaction times across stopping strategies in the simultaneous treatment aligns
with the idea that choosing to claim at later periods requires more steps of reasoning.

Result 5. (1) In the sequential treatment, when players see a dirty face, their reaction time
is shorter in later periods. (2) In the simultaneous treatment, the reaction time of choosing
to claim at some period when players see a dirty face is monotonically increasing in the
stopping periods. However, players take much less time to decide to always wait.
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8 Conclusion

This paper theoretically and experimentally studies the DCH solution, an alternative model
that relaxes the mutual consistency requirement of the standard equilibrium theory, in multi-
stage games of incomplete information. Instead of mutual consistency, DCH posits that
players are heterogeneous with respect to their levels of sophistication and incorrectly believe
others are strictly less sophisticated than they are. As the dynamic game progresses, strategic
players will update their beliefs about others’ types and levels.

In this paper, I characterize some general properties of the DCH belief system in multi-
stage games of incomplete information. Proposition 1 guarantees that the DCH belief system
is a product measure across players when every player’s payoff-relevant type is independently
determined. On the other hand, when the prior distribution of types is correlated across
players, Proposition 2 demonstrates the existence of a unique corresponding game, where
the types are independently drawn, resulting in the DCH solution being invariant in both
games. While solving the DCH solution does not require a fixed point argument, it could
be computationally challenging in principle, especially when there are more players or infor-
mation sets involved. To this end, Proposition 1 and 2 simplify the computation, preserving
the tractability of DCH. In addition, Proposition 3 shows that strategic players always con-
sider the possibility of others being non-strategic, causing the lack of common knowledge of
rationality in DCH.

Furthermore, another feature of DCH is the violation of invariance under strategic equiv-
alence, which arises because level 0 players’ behavioral strategies are not always outcome-
equivalent in different strategically equivalent games, leading to different behavior of higher-
level players. To demonstrate the violation of invariance and contrast DCH with the standard
equilibrium theory, I characterize the DCH solutions of the sequential and simultaneous two-
person dirty-faces games. Despite the two versions of the game sharing the same reduced
normal form, the DCH solutions of the two versions differ in a specific way, as characterized
by Proposition 6. In summary, DCH predicts that higher-level (level k ≥ 2) players tend to
claim earlier in the sequential version when they are sufficiently impatient, and vice versa in
the simultaneous version when they are patient enough.

To test the predictions of DCH, I design and run a laboratory experiment on two-person
dirty-faces games where I manipulate both the timing (sequential vs. simultaneous) and
payoff structures. The experimental design is guided by DCH, wherein I first calibrate
the model using an existing dirty-faces game experimental dataset and choose the payoff
parameters to maximize the diagnositicity. Considering that the prior distributions of levels
might significantly vary among different subject pools, this experimental design to some
extent serves as a stress test for assessing the external validity of DCH.

Overall, a significant treatment effect is detected: players tend to claim earlier in the
sequential treatment than in the simultaneous treatment. Some interesting patterns emerge
from the data. First, players’ behavior significantly varies with payoff structures in both
treatments, aligning with the qualitative predictions of DCH. Second, players take longer to
choose higher-level stopping strategies. Third, when comparing the fitness of different behav-
ioral models, we find that QDCH outperforms other behavioral models in both treatments.
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Moreover, there is some evidence of the failure of best responses and Bayesian inferences.

Lastly, when comparing the observed treatment effects with the predictions of the cali-
brated DCH, we find in one of the diagnostic games where (δ, ᾱ) = (0.6, 0.45), the empirical
frequency of choosing to claim at period 2 with the observation of a dirty face is 30.77%
higher in the sequential treatment than in the simultaneous treatment, which is highly con-
sistent with the calibrated DCH (approximately 31.15%). However, in all control games and
the other diagnostic game, the treatment effect is significantly higher than the predictions of
the calibrated DCH. Along with the estimation results, we can conclude that while the ob-
served violation of invariance in the data is primarily attributed to the relaxation of mutual
consistency, it is a joint consequence of the relaxation of all equilibrium requirements.

The key contribution of this paper is establishing the theoretical and empirical founda-
tions of the DCH solution. However, there are considerable extensions and applications that
might be fruitful for future research. The first extension worth pursuing is to endogenize
the levels of sophistication, possibly using the cost-benefit analysis proposed by Alaoui and
Penta (2016). This extension could be challenging in dynamic games because each player’s
level might vary in different information sets of the same game. Additionally, players not
only form beliefs about others’ current levels but also about their cognitive bounds, which
might make the model less tractable.

Second, while the assumption of uniform randomization of level 0 players has some dis-
tinct advantages, exploring the actual behavior of level 0 players is another direction worth
investigating. Inspired by Li and Camerer (2022), an alternative assumption for level 0
players is that they will randomize across visually salient actions at each information set.
In particular, due to the rapid development of machine learning algorithms, how visually
salient an action is can be quantified even before any behavioral data is collected.

Finally, this last section lists several potential applications of dynamic games of incom-
plete information where the mutual consistency requirement is easily violated and the DCH
solution might provide some new insights.

1. Social learning : In social learning games with repeated actions, players make inferences
about the true state based on their private signals and publicly observed actions (see
Bala and Goyal (1998) and Harel et al. 2021). The DCH solution posits that players do
not commonly believe others are able to make correct inferences. Specifically, level 0
players’ actions do not convey any information about the true states, while level 1 play-
ers will always obey their private signals. For higher-level players, they will constantly
update their beliefs about the true state and other players’ levels of sophistication. An
open question is whether higher-level players will eventually learn the true state.

2. Sequential bargaining : The equilibrium of a sequential bargaining game was first char-
acterized by Rubinstein (1982). To reach the perfect equilibrium, players are required
to choose the optimal proposal among a continuum of choices at every subgame, and
believe the other player to optimally respond to each proposal. Later, McKelvey and
Palfrey (1993, 1995) considered a two-person multi-stage bargaining game where each
players has a private payoff-relevant type and makes a binary decide (whether to give
in or hold out) in every period. The game continues until at least one of the players
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gives in. In this game, it is strictly dominant for the strong type of players to hold out
forever, but not for the weak type—the weak type players need to trade-off between
the reward of giving in earlier and the reputational benefit from mimicking the high
type. This reasoning is behaviorally challenging. In contrast, DCH is not a solution of
a fixed point problem but solved iteratively from lower to higher levels. Therefore, the
DCH solution is expected to be sharply different from the standard equilibrium in the
sequential bargaining game.

3. Signaling: In a multi-stage signaling game, an informed player will have a persistent
type and interact with an uninformed player repeatedly. Kaya (2009) analyzed such an
environment, finding that the set of equilibrium signal sequences includes a large class
of possibly complex signal sequences. In contrast, in the DCH solution, the uninformed
player will learn about the informed player’s true type and level when observing a new
signal, and the informed player will also learn about the uninformed player’s level
at each stage. Given that the DCH solution is unique, it would be interesting to
characterize the signal sequence of each level of informed players and test whether this
is consistent with the behavioral data.

4. Sequential voting: There is a large class of voting rules that includes multiple rounds,
such as sequential voting over agendas (Baron and Ferejohn, 1989) or elections based
on repeated ballots and elimination of one candidate in each round (Bag et al., 2009).
To reach Condorcet consistent outcomes, players are required to behave strategically.
However, in cases where voters are not strategic or believe others might not be strate-
gic, the DCH solution becomes an ideal solution concept. In the DCH solution, voters
will update their beliefs about others’ preferences and levels of sophistication simulta-
neously, and vote according to their posterior beliefs in each round. Since the common
knowledge of rationality is violated in DCH, it is natural to conjecture that higher-level
players will vote more sincerely in DCH than in the equilibrium.
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A Omitted Proofs for General Properties

Proof of Lemma 1

The uniqueness of DCH can be proven by induction on levels. That is, it suffices to prove
that for every level k ≥ 1, the optimal behavior strategy profile is unique. Consider any
player i ∈ N any type θi ∈ Θi. Level 1 type θi player i believes all other players are level 0,
and will uniformly randomize at every history. Therefore, at every history ht, level 1 type
θi player i’s DCH belief is μ1

i (θ−i, (0, ..., 0) | θi, ht) = F(θ−i|θi). By one-deviation principle,
level 1 type θi player i’s best response satisfies that for any history ht and action a ∈ Ai(h

t),
σ1
i (a|θi, ht) > 0 if and only if

a ∈ arg max
a′∈Ai(ht)

Eu1
i ((σ

0
−i, σ̄

1
i (a

′)) | θi, ht)

where σ̄1
i agrees with σ1

i except at (θi, h
t) where σ̄1

i (a
′) chooses a′ with probability 1. Since

players are assumed to uniformly randomize over optimal actions when they are indifferent,
σ1
i is uniquely pinned down.

Suppose there is K > 2 such that the optimal strategy profiles for level 1 to K − 1 are
unique. In this case, level K player i’s conjecture about other players’ behavior strategy
profile σ̃−K

−i is also unique and totally mixed. By one-deviation principle, level K type θi
player i’s best response satisfies that for any history ht and a ∈ Ai(h

t), σK
i (a|θi, ht) > 0 if

and only if
a ∈ arg max

a′∈Ai(ht)
EuK

i ((σ̃
−K
−i , σ̄K

i (a′)) | θi, ht).

Since players are assumed to uniformly randomize over optimal actions when they are indif-
ferent, σK

i is again uniquely pinned down. This completes the proof. �

Proof of Proposition 1

To prove this proposition, I first characterize the posterior beliefs in Lemma 2 then prove
that the beliefs are independent across players if the types are independently drawn.

Lemma 2. Consider any multi-stage game with observed actions Γ, any i ∈ N , θi ∈ Θi,

h ∈ H\HT , and every level k ∈ N. For every information set Ii = (θi, h), level k player i’s

belief at Ii can be characterized as follows.

1. Level k player i’s prior belief about other players’ types and levels are independent.

That is, μk
i (θ−i, τ−i|θi, h∅) = F(θ−i|θi)

∏
j �=i P̂

k
ij(τj).

2. For any 1 ≤ t < T , and ht ∈ Ht, level k player i’s belief at information set (θi, h
t)

where ht = (a1, . . . , at) is

μk
i (θ−i, τ−i|θi, ht) =

F(θ−i|θi)
∏

j �=i

{
P̂ k
ij(τj)

∏t
l=1 σ

τj
j (alj|θj, hl−1)

}
∑

θ′−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} F(θ′−i|θi)

∏
j �=i

{
P̂ k
ij(τ

′
j)
∏t

l=1 σ
τ ′j
j (alj|θ′j, hl−1)

} .
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Proof of Lemma 2:

1. At the beginning of the game, the only information available to player i is his own type
θi and his level of sophistication τi = k. Therefore, the prior belief is the probability of the
opponents’ types and levels conditional on θi and τi, which is

μk
i (θ−i, τ−i|θi, h∅) = Pr(θ−i, τ−i|θi, τi = k)

= Pr(θ−i|θi) Pr(τ−i|τi = k)

= F(θ−i|θi)
∏
j �=i

P̂ k
ij(τj).

The second equality holds because the types and levels are independently drawn.

2. This can be shown by induction on t. Consider any available history at period 2, h1 ∈ H1.
Level k player i’s belief at information set (θi, h

1) is

μk
i (θ−i, τ−i|θi, h1) =

μk
i (θ−i, τ−i|θi, h∅)

∏
j �=i σ

τj
j (a1j |θj, h∅)∑

θ′−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} μ

k
i (θ

′
−i, τ

′
−i|θi, h∅)

∏
j �=i σ

τ ′j
j (a1j |θ′j, h∅)

. (A.1)

By step 1, we know μk
i (θ−i, τ−i|θi, h∅) = F(θ−i|θi)

∏
j �=i P̂

k
ij(τj). Plugging in Equation (A.1),

we can obtain that

μk
i (θ−i, τ−i|θi, h1) =

μk
i (θ−i, τ−i|θi, h∅)

∏
j �=i σ

τj
j (a1j |θj, h∅)∑

θ′−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} μ

k
i (θ

′
−i, τ

′
−i|θi, h∅)

∏
j �=i σ

τ ′j
j (a1j |θ′j, h∅)

=
F(θ−i|θi)

∏
j �=i

{
P̂ k
ij(τj)σ

τj
j (a1j |θj, h∅)

}
∑

θ′−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} F(θ′−i|θi)

∏
j �=i

{
P̂ k
ij(τ

′
j)σ

τ ′j
j (a1j |θ′j, h∅)

} .
Next, suppose there is t′ such that the statement holds for every period t = 2, . . . , t′.

Consider period t′ + 1 and any history available at period t′ + 1, ht′ ∈ Ht′ where ht′ =
(a1, . . . , at

′
). Then level k player i’s belief at information set (θi, h

t′) is

μk
i (θ−i, τ−i|θi, ht′) =

μk
i (θ−i, τ−i|θi, ht′−1)

∏
j �=i σ

τj
j (at

′
j |θj, ht′−1)∑

θ′−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} μ

k
i (θ

′
−i, τ

′
−i|θi, ht′−1)

∏
j �=i σ

τ ′j
j (at

′
j |θ′j, ht′−1)

=
F(θ−i|θi)

∏
j �=i

{
P̂ k
ij(τj)

∏t′−1
l=1 σ

τj
j (alj|θj, hl−1)

}∏
j �=i σ

τj
j (at

′
j |θj, ht′−1)∑

θ′−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} F(θ′−i|θi)

∏
j �=i

{
P̂ k
ij(τ

′
j)
∏t′−1

l=1 σ
τ ′j
j (alj|θ′j, hl−1)

}∏
j �=i σ

τ ′j
j (at

′
j |θ′j, ht′−1)

=
F(θ−i|θi)

∏
j �=i

{
P̂ k
ij(τj)

∏t′
l=1 σ

τj
j (alj|θj, hl−1)

}
∑

θ′−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} F(θ′−i|θi)

∏
j �=i

{
P̂ k
ij(τ

′
j)
∏t′

l=1 σ
τ ′j
j (alj|θ′j, hl−1)

} .
The second equality holds because of the induction hypothesis, as desired. �
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Proof of Proposition 1:

We prove this by induction on t. Let σ be any level-dependent strategy profile and F and
P be any distributions of types and levels. First, consider t = 1. By Lemma 2, we know
μk
i (θ−i, τ−i|θi, h∅) = F(θ−i|θi)

∏
j �=i P̂

k
ij(τj). As the prior distribution of types is independent

across players, we can obtain that

μk
i (θ−i, τ−i|θi, h∅) = F(θ−i|θi)

∏
j �=i

P̂ k
ij(τj)

=
∏
j �=i

Fj(θj)
∏
j �=i

P̂ k
ij(τj)

=
∏
j �=i

[
Fj(θj)P̂

k
ij(τj)

]
=
∏
j �=i

μk
ij(θj, τj|θi, h∅).

Therefore, we know the result is true at t = 1. Next, suppose there is t′ > 1 such that the
result holds for all t = 1, . . . , t′. We want to show that the result holds at period t′ + 1. Let
ht′ ∈ Ht′ be any available history in period t′ + 1 where ht′ = (ht′−1, at

′
). Therefore, player

i’s posterior belief at history ht′ is

μk
i (θ−i, τ−i|θi, ht′) =

μk
i (θ−i, τ−i|θi, ht′−1)

∏
j �=i σ

τj
j (at

′
j |θj, ht′−1)∑

θ′−i∈Θ−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} μ

k
i (θ

′
−i, τ

′
−i|θi, ht′−1)

∏
j �=i σ

τ ′j
j (at

′
j |θ′j, ht′−1)

.

By induction hypothesis, we know

μk
i (θ−i, τ−i|θi, ht′−1) =

∏
j �=i

μk
ij(θj, τj|θi, ht′−1).

Therefore, as we rearrange the posterior belief μk
i (θ−i, τ−i|θi, ht′), we can obtain that

μk
i (θ−i, τ−i|θi, ht′) =

μk
i (θ−i, τ−i|θi, ht′−1)

∏
j �=i σ

τj
j (at

′
j |θj, ht′−1)∑

θ′−i∈Θ−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} μ

k
i (θ

′
−i, τ

′
−i|θi, ht′−1)

∏
j �=i σ

τ ′j
j (at

′
j |θ′j, ht′−1)

=

∏
j �=i

[
μk
ij(θj, τj|θi, ht′−1)σ

τj
j (at

′
j |θj, ht′−1)

]
∑

θ′−i∈Θ−i

∑
{τ ′−i:τ

′
j<k ∀j �=i}

∏
j �=i

[
μk
ij(θ

′
j, τ

′
j|θi, ht′−1)σ

τ ′j
j (at

′
j |θ′j, ht′−1)

]
=

∏
j �=i

[
μk
ij(θj, τj|θi, ht′−1)σ

τj
j (at

′
j |θj, ht′−1)

]
∑

θ′−i∈Θ−i

∏
j �=i

[∑
τ ′j<k μ

k
ij(θ

′
j, τ

′
j|θi, ht′−1)σ

τ ′j
j (at

′
j |θ′j, ht′−1)

]
=

∏
j �=i

[
μk
ij(θj, τj|θi, ht′−1)σ

τj
j (at

′
j |θj, ht′−1)

]
∏

j �=i

[∑
θ′j∈Θj

∑
τ ′j<k μ

k
ij(θ

′
j, τ

′
j|θi, ht′−1)σ

τ ′j
j (at

′
j |θ′j, ht′−1)

] .
As a result, we can conclude that

μk
i (θ−i, τ−i|θi, ht′) =

∏
j �=i

⎡
⎣ μk

ij(θj, τj|θi, ht′−1)σ
τj
j (at

′
j |θj, ht′−1)∑

θ′j∈Θj

∑
τ ′j<k μ

k
ij(θ

′
j, τ

′
j|θi, ht′−1)σ

τ ′j
j (at

′
j |θ′j, ht′−1)

⎤
⎦

=
∏
j �=i

μk
ij(θj, τj|θi, ht′).
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This completes the proof of the proposition. �

Proof of Proposition 2

By Lemma 2, we know that in the transformed game (with independent types) Γ̂, level k
player i’s belief at ht ∈ Ht is

μ̂k
i (θ−i, τ−i|θi, ht) =

F̂(θ−i|θi)
∏

j �=i

{
P̂ k
ij(τj)

∏t
l=1 σ

τj
j (alj|θj, hl−1)

}
∑

θ′−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} F̂(θ′−i|θi)

∏
j �=i

{
P̂ k
ij(τ

′
j)
∏t

l=1 σ
τ ′j
j (alj|θ′j, hl−1)

}

=

∏
j �=i

{
P̂ k
ij(τj)

∏t
l=1 σ

τj
j (alj|θj, hl−1)

}
∑

θ′−i

∑
{τ ′−i:τ

′
j<k ∀j �=i}

∏
j �=i

{
P̂ k
ij(τ

′
j)
∏t

l=1 σ
τ ′j
j (alj|θ′j, hl−1)

} .
Therefore, we can obtain that

μk
i (θ−i, τ−i|θi, ht) =

F(θ−i|θi)
∏

j �=i

{
P̂ k
ij(τj)

∏t
l=1 σ

τj
j (alj|θj, hl−1)

}
∑

θ′−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} F(θ′−i|θi)

∏
j �=i

{
P̂ k
ij(τ

′
j)
∏t

l=1 σ
τ ′j
j (alj|θ′j, hl−1)

}
=

F(θ−i|θi)μ̂k
i (θ−i, τ−i|θi, ht)∑

θ′−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} F(θ′−i|θi)μ̂k

i (θ
′
−i, τ

′
−i|θi, ht)

.

To complete the proof, it suffices to show that for each level k player i and every ht ∈
H\HT , maximizing Euk

i given belief μk
i and σ−k

−i is equivalent to maximizing Eûk
i given belief

μ̂k
i and σ̂−k

−i = σ−k
−i . This is true because the expected payoff in the original game (with

correlated types) is:

Euk
i (σ|θi, ht) =∑

hT∈HT

∑
θ−i∈Θ−i

∑
{τ−i:τj<k ∀j �=i}

μk
i (θ−i, τ−i|θi, ht)P k

i (h
T |ht, θ, τ−i, σ

−k
−i , σ

k
i )ui(h

T , θi, θ−i),

which is proportional to

Eûk
i (σ|θi, ht) =∑

hT∈HT

∑
θ−i∈Θ−i

∑
{τ−i:τj<k ∀j �=i}

F(θ−i|θi)μ̂k
i (θ−i, τ−i|θi, ht)P k

i (h
T |ht, θ, τ−i, σ

−k
−i , σ

k
i )ui(h

T , θi, θ−i)

=
∑

hT∈HT

∑
θ−i∈Θ−i

∑
{τ−i:τj<k ∀j �=i}

μ̂k
i (θ−i, τ−i|θi, ht)P k

i (h
T |ht, θ, τ−i, σ

−k
−i , σ

k
i )ûi(h

T , θi, θ−i).

This completes the proof of the proposition. �
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Proof of Proposition 3

Proof of statement 1:

Consider any player i ∈ N , any level τi, any type θi and any non-terminal history ht =
(ht−1, at) ∈ Ht\HT . To prove the statement, it suffices to show that for any τ̃−i, if τ̃−i 
∈
suppi(τ−i|τi, θi, ht−1), then τ̃−i 
∈ suppi(τ−i|τi, θi, ht).

If τ̃−i 
∈ suppi(τ−i|τi, θi, ht−1), then μτi
i (θ−i, τ̃−i|θi, ht−1) = 0 for any θ−i. By Lemma 2, we

can find that for any θ−i,

μτi
i (θ−i, τ̃−i|θi, ht) =

μτi
i (θ−i, τ̃−i|θi, ht−1)

∏
j �=i σ

τ̃j
j (atj|θj, ht−1)∑

θ′−i

∑
{τ ′−i:τ

′
j<k ∀j �=i} μ

τi
i (θ

′
−i, τ

′
−i|θi, ht−1)

∏
j �=i σ

τ ′j
j (atj|θ′j, ht−1)

= 0,

implying that μτi
i (τ̃−i|θi, ht) = 0 and hence τ̃−i 
∈ suppi(τ−i|τi, θi, ht). �

Proof of statement 2:

The second statement can be proven by induction on t. First, consider t = 1. For any i ∈ N ,
τi ∈ N and θi ∈ Θi, by Lemma 2, we know the belief about other players’ types and levels is
μτi
i (θ−i, τ−i|θi, h∅) = F(θ−i|θi)

∏
j �=i P̂

τi
ij (τj). Since F has full support, for any θ−i ∈ Θ−i,∑

{τ−i:τj<τi ∀j �=i}
μτi
i (θ−i, τ−i|θi, h∅) =

∑
{τ−i:τj<τi ∀j �=i}

F(θ−i|θi)
∏
j �=i

P̂ τi
ij (τj) = F(θ−i|θi) > 0.

Hence, the statement is true at period 1.

Next, suppose there is t′ > 1 such that the result holds for all t = 1, . . . , t′. We want to
show the statement holds at period t′ + 1. Let ht′ be any available history at period t′ + 1
where ht′ = (ht′−1, at

′
). Therefore, player i’s posterior belief at ht′ is

μτi
i (θ−i, τ−i|θi, ht′) =

μτi
i (θ−i, τ−i|θi, ht′−1)

∏
j �=i σ

τj
j (at

′
j |θj, ht′−1)∑

θ′−i∈Θ−i

∑
{τ ′−i:τ

′
j<τi ∀j �=i} μ

τi
i (θ

′
−i, τ

′
−i|θi, ht′−1)

∏
j �=i σ

τ ′j
j (at

′
j |θ′j, ht′−1)

,

which is well-defined because level 0 players are always in the support and σ0
j (a

t′
j |θ′j, ht′−1) =

1
|Aj(ht′−1)| > 0 for all j. By induction hypothesis, we know suppi(θ−i|τi, θi, ht′−1) = Θ−i.

Therefore, as we fix any θ−i ∈ Θ−i, we know μτi
i (θ−i, (0, . . . , 0)|θi, ht′−1) > 0, suggesting that

θ−i ∈ suppi(θ−i|τi, θi, ht′) because

μτi
i (θ−i|θi, ht′) =

∑
{τ−i:τj<τi ∀j �=i} μ

τi
i (θ−i, τ−i|θi, ht′−1)

∏
j �=i σ

τj
j (at

′
j |θj, ht′−1)∑

θ′−i∈Θ−i

∑
{τ ′−i:τ

′
j<τi ∀j �=i} μ

τi
i (θ

′
−i, τ

′
−i|θi, ht′−1)

∏
j �=i σ

τ ′j
j (at

′
j |θ′j, ht′−1)

≥ μτi
i (θ−i, (0, . . . , 0)|θi, ht′−1)

∏
j �=i σ

0
j (a

t′
j |θj, ht′−1)∑

θ′−i∈Θ−i

∑
{τ ′−i:τ

′
j<τi ∀j �=i} μ

τi
i (θ

′
−i, τ

′
−i|θi, ht′−1)

∏
j �=i σ

τ ′j
j (at

′
j |θ′j, ht′−1)

=
μτi
i (θ−i, (0, . . . , 0)|θi, ht′−1)

∏
j �=i

1
|Aj(ht′−1)|∑

θ′−i∈Θ−i

∑
{τ ′−i:τ

′
j<τi ∀j �=i} μ

τi
i (θ

′
−i, τ

′
−i|θi, ht′−1)

∏
j �=i σ

τ ′j
j (at

′
j |θ′j, ht′−1)

> 0.

This completes the proof of the proposition. �
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B Omitted Proofs for Two-Person Dirty-Faces Games

(For Online Publication)

Proof of Proposition 4

Step 1: Consider any i ∈ N . If x−i = O, then player i knows his face is dirty immediately.
Therefore, C is a dominant strategy, suggesting σk

i (t, O) = 1 for all k ≥ 1 and 1 ≤ t ≤ T . If
x−i = X, player i’s belief of having a dirty face at period 1 is p. Hence, the expected payoff
of choosing C at period 1 is pα − (1− p) < 0, implying σk

i (1, X) = 0 for all k ≥ 1. Finally,
since level 1 players believe the other player’s actions don’t convey any information about
their own face types, the expected payoff of C at each period is pα − (1− p) < 0, implying
σ1
i (t,X) = 0 for any 1 ≤ t ≤ T .

Step 2: Consider any level k ≥ 2, and period 2 ≤ t ≤ T . This step characterizes the DCH
posterior belief when x−i = X. When the game proceeds to period t, the posterior belief of
(xi, τ−i) = (f, l) for any f ∈ {O,X} and 0 ≤ l ≤ k − 1 is:

μk
i (f, l|t,X) =

[∏t−1
t′=1(1− σl

−i(t
′, f))

]
pl Pr(f)∑

x∈{O,X}
∑k−1

j=0

[∏t−1
t′=1(1− σj

−i(t
′, x))

]
pj Pr(x)

. (A.2)

By step 1, since strategic players will claim immediately when seeing a clean face, σl
−i(t

′, O) =
1 for all 1 ≤ t′ ≤ t − 1. Therefore, as the game proceeds to period t ≥ 2, level k player
i would know that it is impossible for the other player to observe a dirty face and have a
positive level of sophistication at the same time. Furthermore, let Mk

i (t) be the support of
level k player i’s marginal belief of τ−i at period t. For any 0 ≤ l ≤ k − 1,

l ∈ Mk
i (t) ⇐⇒

∑
xi∈{O,X}

t−1∏
t′=1

(1− σl
−i(t

′, xi)) > 0,

and we let Mk
i+(t) ≡ Mk

i (t)\{0}. Therefore, equation (A.2) implies that for any t ≥ 2,

μk
i (X, 0|t,X) =

(
1
2

)t−1
pp0(

1
2

)t−1
p0 + p

∑
j∈Mk

i+(t) pj
, μk

i (O, 0|t,X) =

(
1
2

)t−1
(1− p)p0(

1
2

)t−1
p0 + p

∑
∈Mk

i+(t) pj
.

Moreover, for any 1 ≤ k′ ≤ k − 1, μk
i (O, k′|t,X) = 0, and for any l ∈ Mk

i+(t),

μk
i (X, l|t,X) =

ppl(
1
2

)t−1
p0 + p

∑
j∈Mk

i+(t) pj
.

Consequently, the marginal belief of having a dirty face at period 2 ≤ t ≤ T is:

μk
i (X|t,X) =

k−1∑
j=0

μk
i (X, j|t,X) =

p
[(

1
2

)t−1
p0 +

∑
j∈Mk

i+(t) pj

]
(
1
2

)t−1
p0 + p

∑
j∈Mk

i+(t) pj
.
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Thus, the expected payoff of choosing C at period t is δt−1
[
(1 + α)μk

i (X|t,X)− 1
]
, which

equals to Euk
i (C|t,X) =

δt−1(
1
2

)t−1
p0 + p

∑
j∈Mk

i+(t) pj

⎧⎨
⎩pα

⎡
⎣(1

2

)t−1

p0 +
∑

j∈Mk
i+(t)

pj

⎤
⎦− (1− p)

[(
1

2

)t−1

p0

]⎫⎬
⎭ . (A.3)

Finally, at period t, level k player i believes the other player will wait with probability

1

2
μk
i (0|t,X) +

∑
j∈Mk

i+(t+1)

μk
i (j|t,X) =

(
1
2

)t
p0 + p

∑
j∈Mk

i+(t+1) pj(
1
2

)t−1
p0 + p

∑
j∈Mk

i+(t) pj
. (A.4)

Step 3: This step proves a monotonicity result: if σk
i (t,X) = 1, then σk+1

i (t,X) = 1 for any
k ≥ 2 and 2 ≤ t ≤ T . The proof consists of two cases. First consider period T . Equation
(A.3) implies σk

i (T,X) = 1 if and only if

δT−1(
1
2

)T−1
p0 + p

∑
j∈Mk

i+(T ) pj

⎧⎨
⎩pα

⎡
⎣(1

2

)T−1

p0 +
∑

j∈Mk
i+(T )

pj

⎤
⎦− (1− p)

[(
1

2

)T−1

p0

]⎫⎬
⎭ ≥ 0

⇐⇒ ᾱ ≥
(
1
2

)T−1
p0(

1
2

)T−1
p0 +

∑
j∈Mk

i+(T ) pj
.

Because Mk
i (T ) ⊆ Mk+1

i (T ), it can be proven that

ᾱ ≥
(
1
2

)T−1
p0(

1
2

)T−1
p0 +

∑
j∈Mk

i+(T ) pj
≥

(
1
2

)T−1
p0(

1
2

)T−1
p0 +

∑
j∈Mk+1

i+ (T ) pj
,

implying that if it is optimal for level k player i to claim at period T , it is also optimal for
level k + 1 player i to claim.

Second, consider any period 2 ≤ t ≤ T − 1. Note that if level k players would choose
C at period t, k 
∈ Mk+1

i (t + 1) and hence Mk
i+(t

′) = Mk+1
i+ (t′) for any t + 1 ≤ t′ ≤ T .

Therefore, as the game proceeds beyond period t, level k and level k + 1 players will have
the same continuation value. Let V k̃

t̃
be level k̃ players’ continuation value at period t̃. The

observation implies V k
t+1 = V k+1

t+1 . Coupled with that Mk
i+(t) ⊆ Mk+1

i+ (t), level k + 1 player
i’s expected payoff of choosing W at period t satisfies(

1
2

)t
p0 + p

∑
j∈Mk+1

i+ (t+1) pj(
1
2

)t−1
p0 + p

∑
j∈Mk+1

i+ (t) pj
V k+1
t+1 ≤

(
1
2

)t
p0 + p

∑
j∈Mk

i+(t+1) pj(
1
2

)t−1
p0 + p

∑
j∈Mk

i+(t) pj
V k
t+1,

where the RHS is level k player’s expected payoff of choosing W at period t. The inequality
shows level k player’s expected payoff of choosing W is weakly higher than level k+1 player’s
expected payoff of choosing W . To complete the proof, it suffices to argue that level k + 1
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player’s expected payoff of C at period t is higher than level k player’s expected payoff of C.
This is true because Mk

i+(t) ⊆ Mk+1
i+ (t) implies μk+1

i (X|t,X) ≥ μk
i (X|t,X), and hence,

δt−1
[
(1 + α)μk+1

i (X|t,X)− 1
] ≥ δt−1

[
(1 + α)μk

i (X|t,X)− 1
]
.

Step 4: The proposition is proven by induction on k. This step establishes the base case
for level 2 players. By step 1, σ1

i (t,X) = 0 for all 1 ≤ t ≤ T , and hence M2
i+(t) = {1} for

all 1 ≤ t ≤ T . Therefore, equation (A.3) suggests the expected payoff of C at period T is

Eu2
i (C|T,X) =

δT−1(
1
2

)T−1
p0 + pp1

{
pα

[(
1

2

)T−1

p0 + p1

]
− (1− p)

[(
1

2

)T−1

p0

]}
.

Therefore, C is optimal at period T if and only if

Eu2
i (C|T,X) ≥ 0 ⇐⇒ ᾱ ≥

(
1
2

)T−1
p0(

1
2

)T−1
p0 + p1

.

For any period 2 ≤ t ≤ T − 1, I first prove the direction of necessity. Equation (A.4)
implies level 2 player i’s belief about the other player choosing W at period t is:

1

2
μ2
i (0|t,X) + μ2

i (1|t,X) =

(
1
2

)t
p0 + pp1(

1
2

)t−1
p0 + pp1

.

Therefore, the expected payoff of W at period t is at least

[
( 1
2)

t
p0+pp1

( 1
2)

t−1
p0+pp1

]
Eu2

i (C|t+ 1, X) =

δt(
1
2

)t−1
p0 + pp1

{
pα

[(
1

2

)t

p0 + p1

]
− (1− p)

[(
1

2

)t

p0

]}
.

Since W is always available, C is strictly dominated at period t for level 2 player i if

Eu2
i (C|t,X) <

[ (
1
2

)t
p0 + pp1(

1
2

)t−1
p0 + pp1

]
Eu2

i (C|t+ 1, X)

⇐⇒ ᾱ <

[(
1
2

)t−1 − (1
2

)t
δ
]
p0[(

1
2

)t−1 − (1
2

)t
δ
]
p0 + (1− δ)p1

.

This proves the direction of necessity.

Second, the sufficiency is proven by induction on the periods. Namely, I show the suffi-
ciency holds for any period T − t′ where 1 ≤ t′ ≤ T − 2. Consider the base case for period
T − 1. Because

ᾱ ≥
[(

1
2

)T−2 − (1
2

)T−1
δ
]
p0[(

1
2

)T−2 − (1
2

)T−1
δ
]
p0 + (1− δ)p1

>

(
1
2

)T−1
p0(

1
2

)T−1
p0 + p1

,
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level 2 players will choose C at period T , so it is optimal to choose C at period T − 1 if

Eu2
i (C|T − 1, X) ≥

[(
1
2

)T−1
p0 + pp1(

1
2

)T−2
p0 + pp1

]
Eu2

i (C|T,X)

⇐⇒ ᾱ ≥
[(

1
2

)T−2 − (1
2

)T−1
δ
]
p0[(

1
2

)T−2 − (1
2

)T−1
δ
]
p0 + (1− δ)p1

.

Now, suppose there is t′ ≤ T −2 such that the statement holds at any period T − t where
1 ≤ t ≤ t′ − 1. It can be proven that the sufficiency also holds at period T − t′. Because

ᾱ ≥
[(

1
2

)T−t′−1 − (1
2

)T−t′
δ
]
p0[(

1
2

)T−t′−1 − (1
2

)T−t′
δ
]
p0 + (1− δ)p1

>

[(
1
2

)T−t′ − (1
2

)T−t′+1
δ
]
p0[(

1
2

)T−t′ − (1
2

)T−t′+1
δ
]
p0 + (1− δ)p1

,

level 2 players will choose C at period T − t′ + 1 by induction hypothesis. Therefore, it is
optimal to choose C at period T − t′ if

Eu2
i (C|T − t′, X) ≥

[ (
1
2

)T−t′
p0 + pp1(

1
2

)T−t′−1
p0 + pp1

]
Eu2

i (C|T − t′ + 1, X)

⇐⇒ ᾱ ≥
[(

1
2

)T−t′−1 − (1
2

)T−t′
δ
]
p0[(

1
2

)T−t′−1 − (1
2

)T−t′
δ
]
p0 + (1− δ)p1

.

This completes the proof of sufficiency.

Step 5: Step 4 establishes the base case for k = 2. Now, suppose there is K > 2 such that
the statement holds for all 2 ≤ k ≤ K. It suffices to prove the statement holds for level K+1
players. The proof for period T is straightforward. From step 3, we know if σK

i (T,X) = 1,
then σK+1

i (T,X) = 1. Hence, the only case that needs to be considered is when

ᾱ <

(
1
2

)T−1
p0(

1
2

)T−1
p0 +

∑K−1
j=1 pj

.

By induction hypothesis, σl
−i(t,X) = 0 for all 1 ≤ l ≤ K and for all 1 ≤ t ≤ T . Therefore,

σK+1
i (T,X) = 1 if and only if EuK+1

i (C|T,X) ≥ 0, which is equivalent to

ᾱ ≥
(
1
2

)T−1
p0(

1
2

)T−1
p0 +

∑K
j=1 pj

.

For any period 2 ≤ t ≤ T − 1, I first prove the direction of necessity. If

ᾱ <

[(
1
2

)t−1 − (1
2

)t
δ
]
p0[(

1
2

)t−1 − (1
2

)t
δ
]
p0 + (1− δ)

∑K
j=1 pj

,
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then by induction hypothesis, σl
−i(t

′, X) = 0 for all 1 ≤ l ≤ K and 1 ≤ t′ ≤ t, implying
that MK+1

i+ (t) = {1, . . . , K}. Then equation (A.3) suggests that the expected payoff of C at
period t is

δt−1(
1
2

)t−1
p0 + p

∑K
j=1 pj

{
pα

[(
1

2

)t−1

p0 +
K∑
j=1

pj

]
− (1− p)

[(
1

2

)t−1

p0

]}
.

Furthermore, equation (A.4) suggests level K + 1 players believe the other player will wait
at period t with probability

1

2
μK+1
i (0|t,X) +

K∑
j=1

μK+1
i (l|t,X) =

(
1
2

)t
p0 + p

∑K
j=1 pj(

1
2

)t−1
p0 + p

∑K
j=1 pj

.

Therefore, by similar calculation as in step 4, choosing C is strictly dominated if

δt−1(
1
2

)t−1
p0 + p

∑K
j=1 pj

{
pα

[(
1

2

)t−1

p0 +
K∑
j=1

pj

]
− (1− p)

[(
1

2

)t−1

p0

]}

<
δt(

1
2

)t−1
p0 + p

∑K
j=1 pj

{
pα

[(
1

2

)t

p0 +
K∑
j=1

pj

]
− (1− p)

[(
1

2

)t

p0

]}
,

which is implied by

ᾱ <

[(
1
2

)t−1 − (1
2

)t
δ
]
p0[(

1
2

)t−1 − (1
2

)t
δ
]
p0 + (1− δ)

∑K
j=1 pj

.

This proves the direction of necessity.

Second, the sufficiency is proven by induction on the periods. Namely, I show the suffi-
ciency holds for any period T − t′ where 1 ≤ t′ ≤ T − 2. Consider the base case for period
T − 1. By step 3, if σK

i (T − 1, X) = 1, then σK+1
i (T − 1, X) = 1. Therefore, it suffices to

consider the case where[(
1
2

)T−2 − (1
2

)T−1
δ
]
p0[(

1
2

)T−2 − (1
2

)T−1
δ
]
p0 + (1− δ)

∑K
j=1 pj

≤ ᾱ <

[(
1
2

)T−2 − (1
2

)T−1
δ
]
p0[(

1
2

)T−2 − (1
2

)T−1
δ
]
p0 + (1− δ)

∑K−1
j=1 pj

.

By induction hypothesis, σl
−i(t,X) = 0 for all 1 ≤ t ≤ T − 1 and 1 ≤ l ≤ K. Moreover,

σK+1
i (T,X) = 1 because[(

1
2

)T−2 − (1
2

)T−1
δ
]
p0[(

1
2

)T−2 − (1
2

)T−1
δ
]
p0 + (1− δ)

∑K
j=1 pj

>

(
1
2

)T−1
p0(

1
2

)T−1
p0 +

∑K
j=1 pj

.

58



Therefore, by a similar calculation as in step 4, it can be proven that it is optimal for level
K + 1 players to choose C at period T − 1 if

EuK+1
i (C|T − 1, X) ≥

[(
1
2

)T−1
p0 + p

∑K
j=1 pj(

1
2

)T−2
p0 + p

∑K
j=1 pj

]
EuK+1

i (C|T,X)

⇐⇒ ᾱ ≥
[(

1
2

)T−2 − (1
2

)T−1
δ
]
p0[(

1
2

)T−2 − (1
2

)T−1
δ
]
p0 + (1− δ)

∑K
j=1 pj

.

Now, suppose there is t′ ≤ T − 2 such that the statement holds for any period T − t
where 1 ≤ t ≤ t′ − 1. It can be proven that the statement also holds at period period T − t′.
By step 3, if σK

i (T − t′, X) = 1, then σK+1
i (T − t′, X) = 1 and it suffices to consider the case:[(

1
2

)T−t′−1 − (1
2

)T−t′
δ
]
p0[(

1
2

)T−t′−1 − (1
2

)T−t′
δ
]
p0 + (1− δ)

∑K
j=1 pj

≤ ᾱ

<

[(
1
2

)T−t′−1 − (1
2

)T−t′
δ
]
p0[(

1
2

)T−t′−1 − (1
2

)T−t′
δ
]
p0 + (1− δ)

∑K−1
j=1 pj

.

By induction hypothesis, σl
−i(t,X) = 0 for all 1 ≤ t ≤ T − t′ and 1 ≤ l ≤ K, and

σK+1
i (T − t′ + 1, X) = 1. Therefore, by a similar calculation as in step 4, it can be proven

that it is optimal for level K + 1 players to choose C at period T − t′ if

ᾱ ≥
[(

1
2

)T−t′−1 − (1
2

)T−t′
δ
]
p0[(

1
2

)T−t′−1 − (1
2

)T−t′
δ
]
p0 + (1− δ)

∑K
j=1 pj

.

This completes the proof of the proposition. �

Proof of Corollary 1

By Proposition 4, we know σk
i (t, O) = 1 for all t and k ≥ 1, and σ1

i (t,X) = 0 for all t.
Then by Definition 2, we can obtain that σ̂k

i (O) = 1 for all k ≥ 1, and σ̂1
i (X) = T + 1. In

addition, since σk
i (1, X) = 0 for all k ≥ 2, σ̂k

i (X) 
= 1. Moreover, the DCH solution can be
equivalently characterized by optimal stopping periods because for any t ≥ 2 and k ≥ 2,

σ̂k
i (X) = t ⇐⇒ σk

i (t− 1, X) = 0 and σk
i (t,X) = 1,

σ̂k
i (X) = T + 1 ⇐⇒ σk

i (t
′, X) = 0 for any 1 ≤ t′ ≤ T.

Lastly, to show the monotonicity, it suffices to show that for any k′ > k ≥ 2 and any
2 ≤ t ≤ T , if σk

i (t,X) = 1, then σk′
i (t,X) = 1. The discussion is separated into two cases.
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First, if t = T , then by Proposition 4, σk
i (T,X) = 1 suggests

ᾱ ≥
(
1
2

)T−1
p0(

1
2

)T−1
p0 +

∑k−1
j=1 pj

>

(
1
2

)T−1
p0(

1
2

)T−1
p0 +

∑k′−1
j=1 pj

,

implying σk′
i (T,X) = 1. Second, if 2 ≤ t ≤ T − 1, by Proposition 4, σk

i (t,X) = 1 suggests

ᾱ ≥
[(

1
2

)t−1 − (1
2

)t
δ
]
p0[(

1
2

)t−1 − (1
2

)t
δ
]
p0 + (1− δ)

∑k−1
j=1 pj

>

[(
1
2

)t−1 − (1
2

)t
δ
]
p0[(

1
2

)t−1 − (1
2

)t
δ
]
p0 + (1− δ)

∑k′−1
j=1 pj

,

implying σk′
i (t,X) = 1. This completes the proof. �

Proof of Proposition 5

Step 1: Consider any i ∈ N . If x−i = O, player i knows his face is dirty immediately,
suggesting 1 is a dominant strategy and σ̃k

i (O) = 1 for any k ≥ 1. If x−i = X, the expected
payoff of 1 is pα− (1− p) < 0, implying σ̃k

i (X) ≥ 2 for any k ≥ 1. Moreover, level 1 players
believe the other player is level 0, so when observing X, the expected payoff of 2 ≤ j ≤ T is

p

[
T + 2− j

T + 1
δj−1α

]
− (1− p)

[
T + 2− j

T + 1
δj−1

]
= δj−1

(
T + 2− j

T + 1

)
[pα− (1− p)] < 0.

implying σ̃1
i (X) = T + 1.

Step 2: This step proves for any K > 1, if σ̃l+1
i (X) ≤ σ̃l

i(X) for all 1 ≤ l ≤ K − 1, then
σ̃K+1
i (X) ≤ σ̃K

i (X). Note that if σ̃K
i (X) = T + 1, then there is nothing to prove. Let

s∗ ≡ σ̃K
i (X) and focus on the case where 2 ≤ s∗ ≤ T . If s∗ = T , then level K + 1 player’s

expected payoff of choosing T is

δT−1

[
pα

(
2

T + 1

p0∑K
j=0 pj

+

∑K
j=1 pj∑K
j=0 pj

)
− (1− p)

(
2

T + 1

p0∑K
j=0 pj

)]

> δT−1

[
pα

(
2

T + 1

p0∑K−1
j=0 pj

+

∑K−1
j=1 pj∑K−1
j=0 pj

)
− (1− p)

(
2

T + 1

p0∑K−1
j=0 pj

)]
≥ 0.

The last inequality holds because it is optimal for level K players to choose T . This suggests
that T + 1 is dominated by T and hence σ̃K+1

i (X) ≤ T = σ̃K
i (X).

On the other hand, consider 2 ≤ s∗ ≤ T − 1. If level K + 1 player i chooses some s
where s∗ < s < T + 1 that yields a non-negative expected payoff, then choosing s is strictly
suboptimal because
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δs−1

[
pα

(
T + 2− s

T + 1

p0∑K
j=0 pj

+

∑K−1
j=1 pj∑K
j=0 pj

)
− (1− p)

(
T + 2− s

T + 1

p0∑K
j=0 pj

)]

< δs−1

[
pα

(
T + 2− s

T + 1

p0∑K−1
j=0 pj

+

∑K−1
j=1 pj∑K−1
j=0 pj

)
− (1− p)

(
T + 2− s

T + 1

p0∑K−1
j=0 pj

)]

≤ δs
∗−1

[
pα

(
T + 2− s∗

T + 1

p0∑K−1
j=0 pj

+

∑K−1
j=1 pj∑K−1
j=0 pj

)
− (1− p)

(
T + 2− s∗

T + 1

p0∑K−1
j=0 pj

)]

< δs
∗−1

[
pα

(
T + 2− s∗

T + 1

p0∑K
j=0 pj

+

∑K
j=1 pj∑K
j=0 pj

)
− (1− p)

(
T + 2− s∗

T + 1

p0∑K
j=0 pj

)]
.

Note that the second inequality holds because s∗ is level K player’s optimal choice, and
the RHS of the last inequality is level K + 1 player’s expected payoff of choosing s∗. These
inequalities show that it is not optimal for levelK+1 players to choose any s > s∗, suggesting
that σ̃K+1

i (X) ≤ σ̃K
i (X).

Step 3: The proposition is proven by induction on k. This step establishes the base case
for level 2 players. For any 2 ≤ j ≤ T , the expected payoff of choosing j is Eu2

i (j|X) =

p

[(
T + 2− j

T + 1
δj−1α

)
p0

p0 + p1
+
(
δj−1α

) p1
p0 + p1

]
− (1− p)

[(
T + 2− j

T + 1
δj−1

)
p0

p0 + p1

]
.

For level 2 players and any 2 ≤ j ≤ T−1, let Δ2
j ≡ Eu2

i (j|X)−Eu2
i (j+1|X) be the difference

of expected payoffs between j and j + 1. That is,

Δ2
j = δj−1pα

[(
T + 2− j

T + 1
− T + 1− j

T + 1
δ

)
p0

p0 + p1
+ (1− δ)

p1
p0 + p1

]

− δj−1(1− p)

[(
T + 2− j

T + 1
− T + 1− j

T + 1
δ

)
p0

p0 + p1

]
,

suggesting that j dominates j + 1 if and only if

Δ2
j ≥ 0 ⇐⇒ ᾱ ≥

[
T+2−j
T+1

− T+1−j
T+1

δ
]
p0[

T+2−j
T+1

− T+1−j
T+1

δ
]
p0 + (1− δ)p1

.

Because the RHS is decreasing function in j, Δ2
j ≥ 0 implies Δ2

j+1 ≥ 0. Moreover, since

Eu2
i (j|X) ≥ 0 ⇐⇒ ᾱ ≥

T+2−j
T+1

p0
T+2−j
T+1

p0 + p1
,

Δ2
j ≥ 0 implies Eu2

i (j|X) ≥ 0 because

ᾱ ≥
[
T+2−j
T+1

− T+1−j
T+1

δ
]
p0[

T+2−j
T+1

− T+1−j
T+1

δ
]
p0 + (1− δ)p1

>
T+2−j
T+1

p0
T+2−j
T+1

p0 + p1
.
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As a result, σ̃2
i (X) ≤ T if and only if Eu2

i (T |X) ≥ 0, which is equivalent to

ᾱ ≥
2

T+1
p0

2
T+1

p0 + p1
,

and for any other 2 ≤ t ≤ T − 1, σ̃2
i (X) ≤ t if and only if

Δ2
t ≥ 0 ⇐⇒ ᾱ ≥

[
T+2−t
T+1

− T+1−t
T+1

δ
]
p0[

T+2−t
T+1

− T+1−t
T+1

δ
]
p0 + (1− δ)p1

.

Step 4: Step 3 establishes the base case where k = 2. Now suppose there is K > 2 such
that the statement holds for any 2 ≤ k ≤ K. It suffices to prove that the statement also
holds for level K +1 players. By step 1, σ̃K+1

i (X) ≥ 2. Besides, note that for any 1 ≤ t ≤ T
and 1 ≤ l ≤ K, if σ̃l

−i(X) > t, then level K + 1 player i’s expected payoff of choosing
2 ≤ j ≤ t+ 1 is EuK+1

i (j|X) =

δj−1

[
pα

(
T + 2− j

T + 1

p0∑K
j=0 pj

+

∑K
j=1 pj∑K
j=0 pj

)
− (1− p)

(
T + 2− j

T + 1

p0∑K
j=0 pj

)]
.

Similar to step 3, we define ΔK+1
t′ for any 2 ≤ t′ ≤ t where ΔK+1

t′ is the difference of expected
payoff between choosing t′ and t′ + 1. That is,

ΔK+1
t′ ≡ δt

′−1pα

[(
T + 2− t′

T + 1
− T + 1− t′

T + 1
δ

)
p0∑K
j=0 pj

+ (1− δ)

∑K
j=1 pj∑K
j=0 pj

]

− δt
′−1(1− p)

[(
T + 2− t′

T + 1
− T + 1− t′

T + 1
δ

)
p0∑K
j=0 pj

]
.

By the same argument as in step 3, ΔK+1
t′ < 0 implies ΔK+1

t′−1 < 0. Therefore, if σ̃l
−i(X) > t

for any 1 ≤ l ≤ K, it is strictly dominated for level K + 1 players to choose t′ (and all
strategies s < t′) where 2 ≤ t′ ≤ t if

ᾱ <

[
T+2−t′
T+1

− T+1−t′
T+1

δ
]
p0[

T+2−t′
T+1

− T+1−t′
T+1

δ
]
p0 + (1− δ)

∑K
j=1 pj

, (A.5)

and by a similar argument as in step 3, ΔK+1
t′ ≥ 0 implies EuK+1

i (t′|X) ≥ 0.

The proof for period T is straightforward. The implication of the induction hypothesis
is that σ̃l+1

i (X) ≤ σ̃l
i(X) for all 1 ≤ l ≤ K − 1. By step 2, σ̃K+1

i (X) ≤ T if σ̃K
i (X) ≤ T .

Thus, it suffices to consider the case where

ᾱ <
2

T+1
p0

2
T+1

p0 +
∑K−1

j=1 pj
.

By induction hypothesis, σ̃l
i(X) = T + 1 for all 1 ≤ l ≤ K, so σ̃K+1

i (X) ≤ T if and only if

EuK+1
i (T |X) ≥ 0 ⇐⇒ ᾱ ≥

2
T+1

p0
2

T+1
p0 +

∑K
j=1 pj

.
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Next, consider any 2 ≤ t ≤ T − 1. By induction hypothesis and step 2, if σ̃K
i (X) ≤ t, then

σ̃K+1
i (X) ≤ t. Hence, it suffices to complete the proof by considering

ᾱ <

[
T+2−t
T+1

− T+1−t
T+1

δ
]
p0[

T+2−t
T+1

− T+1−t
T+1

δ
]
p0 + (1− δ)

∑K−1
j=1 pj

.

In this case, t < σ̃l+1
i (X) ≤ σ̃l

i(X) for all 1 ≤ l ≤ K − 1. Therefore, inequality (A.5) implies
that σ̃K+1

i (X) ≤ t if and only if

ᾱ ≥
[
T+2−t
T+1

− T+1−t
T+1

δ
]
p0[

T+2−t
T+1

− T+1−t
T+1

δ
]
p0 + (1− δ)

∑K
j=1 pj

.

This completes the proof of this proposition. �

Proof of Corollary 2

It suffices to prove the monotonicity by showing for all k′ > k ≥ 2, if σ̃k
i (X) ≤ t, then

σ̃k′
i (X) ≤ t for any 2 ≤ t ≤ T . We can separate the analysis into two cases. First, if t = T ,

then by Proposition 5, σ̃k
i (X) ≤ T suggests

ᾱ ≥
2

T+1
p0

2
T+1

p0 +
∑k−1

j=1 pj
>

2
T+1

p0
2

T+1
p0 +

∑k′−1
j=1 pj

,

implying σ̃k′
i (X) ≤ T . Second, for any 2 ≤ t ≤ T − 1, by Proposition 5, σ̃k

i (X) ≤ t suggests

ᾱ ≥
[
T+2−t
T+1

− T+1−t
T+1

δ
]
p0[

T+2−t
T+1

− T+1−t
T+1

δ
]
p0 + (1− δ)

∑k−1
j=1 pj

>

[
T+2−t
T+1

− T+1−t
T+1

δ
]
p0[

T+2−t
T+1

− T+1−t
T+1

δ
]
p0 + (1− δ)

∑k′−1
j=1 pj

,

implying σ̃k′
i (X) ≤ t. This completes the proof. �

Proof of Proposition 6

First, for any k ≥ 2, it suffices to prove Sk
T ⊂ Ek

T by showing if σ̃k
i (X) ≤ T , then σ̂k

i (X) ≤ T .
This is true because

2
T+1

p0
2

T+1
p0 +

∑k−1
j=1 pj

>

(
1
2

)T−1
p0(

1
2

)T−1
p0 +

∑k−1
j=1 pj

.

Similarly, for 2 ≤ t ≤ T − 1, we can first observe that Sk
t ⊂ Ek

t if and only if[
T+2−t
T+1

− T+1−t
T+1

δ
]
p0[

T+2−t
T+1

− T+1−t
T+1

δ
]
p0 + (1− δ)

∑k−1
j=1 pj

≥
[(

1
2

)t−1 − (1
2

)t
δ
]
p0[(

1
2

)t−1 − (1
2

)t
δ
]
p0 + (1− δ)

∑k−1
j=1 pj

⇐⇒ δ ≤ (2t − 2)(T + 1)− (t− 1)2t

(2t − 1)(T + 1)− t2t
≡ δ(T, t). (A.6)
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where δ(T, t) > 0 because (2t−2)(T+1)−(t−1)2t ≥ 2(T+1)−4 > 0 and (2t−1)(T+1)−t2t ≥
3(T + 1) − 8 > 0. If δ(T, t) > 1, then the inequality holds for any δ ∈ (0, 1), and hence
Sk
t ⊂ Ek

t . Otherwise, if δ(T, t) < 1, the inequality does not hold for all δ, implying there
is no set inclusion relationship between Sk

t and Ek
t . In addition, inequality (A.6) suggests

σ̂k
i (X) < σ̃k

i (X) if δ < δ(T, t) and σ̂k
i (X) > σ̃k

i (X) if δ > δ(T, t). Lastly, as we rearrange the
inequality, we can obtain that

δ(T, t) < 1 ⇐⇒ (2t − 2)(T + 1)− (t− 1)2t

(2t − 1)(T + 1)− t2t
< 1 ⇐⇒ t <

ln(T + 1)

ln(2)
.

This completes the proof of this proposition. �

Proof of Corollary 3

By Proposition 6, we know for any k ≥ 2, there is no set inclusion relationship between Sk
t

and Ek
t if 2 ≤ t < [ln(T + 1)/ ln(2)]. When T → ∞, this condition holds for any t ≥ 2.

Moreover, from Proposition 6, we can obtain that

δ
∗
(t) = lim

T→∞
δ(T, t) = lim

T→∞
(2t − 2)(T + 1)− (t− 1)2t

(2t − 1)(T + 1)− t2t
=

2t − 2

2t − 1
.

This completes the proof. �

Additional Result for Poisson-DCH

One feature of the Poisson-DCH model is that as τ → ∞, the aggregate choice frequencies
converge to the equilibrium prediction. This provides a second interpretation for the pa-
rameter τ : the higher the value of τ , the closer the predictions are to the equilibrium. It is
worth noting that, as highlighted by Camerer et al. (2004), this convergence property does
not hold for general classes of games.

For the sake of simplicity, I will prove the result for sequential two-person games. A
similar argument holds for the simultaneous version. For any two-person dirty faces game,
conditional on there is an announcement, there are two possible states: one dirty face or two
dirty faces, which are denoted as Ω = {OX,XX}. For each ω ∈ Ω, equilibrium predicts
a deterministic terminal period. We use F ∗

ω(t) to express the (degenerated) distribution of
terminal periods at the equilibrium. The equilibrium predicts that players will choose C
at period 1 when seeing O, and choose W at period 1 and C at period 2 when seeing X.
Therefore, when ω = OX, the game will end at period 1, and when ω = XX, the game will
end at period 2. In other words,

F ∗
OX(t) =

{
0 if t < 1

1 if t ≥ 1,
and F ∗

XX(t) =

{
0 if t < 2

1 if t ≥ 2.

In contrast, given any τ > 0 and ω ∈ Ω, the Poisson-DCH model predicts a non-
degenerated distribution over all possible terminal periods. We use FD

w (t|τ) to denote the
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distribution predicted by the Poisson-DCH. Proposition 7 states that when τ → ∞, the max
norm between FD

ω (t|τ) and F ∗
ω(t) will converge to 0 for any ω ∈ Ω.

Proposition 7. Consider any sequential two-person dirty faces game. When the prior dis-

tribution of levels follows Poisson(τ), for any ω ∈ Ω,

lim
τ→∞

∥∥F ∗
ω(t)− FD

ω (t|τ)∥∥∞ = 0.

Proof.

When ω = OX, a strategic player that sees a clean face will choose C in period 1. Therefore,

FD
OX(1|τ) = 1−

(
1

2
e−τ

)(
1− 1

2
e−τ

)
.

To show
∥∥F ∗

OX(t)− FD
OX(t|τ)

∥∥
∞ → 0, it suffices to show FD

OX(1|τ) → 1 as τ → ∞. This is
true because

lim
τ→∞

FD
OX(1|τ) = lim

τ→∞
1−
(
1

2
e−τ

)(
1− 1

2
e−τ

)
= 1.

When ω = XX, it suffices to prove the convergence by showing FD
XX(1|τ) → 0 and

FD
XX(2|τ) → 1 as τ → ∞. Since every level k ≥ 1 will choose W in period 1 when seeing a

dirty face, FD
XX(1|τ) = 1− [1− (1/2)e−τ ]

2
, implying that

lim
τ→∞

FD
XX(1|τ) = lim

τ→∞
1−
[
1− 1

2
e−τ

]2
= 0.

Lastly, let K∗(τ) be the lowest level of players to choose C at period 2 when seeing a dirty
face with the prior distribution of levels being Poisson(τ). By Proposition 4, K∗(τ) is weakly
decreasing in τ , and K∗(τ) → 2 as τ → ∞. Hence,

FD
XX(2|τ) = 1−

⎡
⎣(1/4)e−τ +

K∗(τ)−1∑
j=1

e−ττ j/j!

⎤
⎦2

,

suggesting the limit is

lim
τ→∞

FD
XX(2|τ) = lim

τ→∞
1−
⎡
⎣1
4
e−τ +

K∗(τ)−1∑
j=1

e−ττ j

j!

⎤
⎦2

= lim
τ→∞

1−
[
1

4
e−τ + τe−τ

]2
= 1. �
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C Three-Person Three-Period Dirty-Faces Games (For

Online Publication)

In this section, I characterize the DCH solutions for the sequential and simultaneous three-
person three-period dirty-faces games. In a three-person dirty-faces game, each player i will
be random assigned a face type type, either clean (O) or dirty (X). The face types are i.i.d.
drawn from the distribution p = Pr(xi = X) = 1− Pr(xi = O) where p > 0. After the face
types are drawn, each player i can observe the other two players’ faces x−i but not their
own face. If there is at least one player having a dirty face, a public announcement is made,
informing all players of this fact.

There are up to 3 periods. In each period, all three players simultaneously choose either
to claim to have a dirty face (C) or wait (W ) and the actions are revealed at the end of each
period. Similar to the two-person games, the game will end after any period where some
player chooses C or after period 3. A player’s payoff depends on their own face types and
their actions in the terminal period. If player i waits in the terminal period, his payoff is 0
regardless of his face type. If player i chooses C in the terminal period, say period t, then he
will receive δt−1α if his face is dirty but −δt−1 if his face is clean. Following the analysis of
two-person games, I will focus on the case where there is a public announcement. Moreover,
the assumption that 0 < ᾱ ≡ αp/(1 − p) < 1 is maintained so it is strictly dominated to
choose C in period 1 when seeing one or two dirty faces.

C.1 DCH Solution for the Sequential Games

In the sequential three-person three-period dirty-faces game, a behavioral strategy for player
i is a mapping from the period and the observed face types (x−i ∈ {OO,OX,XX}) to the
probability of claiming to have a dirty face. The behavioral strategy is denoted by

σi : {1, 2, 3} × {OO,OX,XX} → [0, 1].

For the sake of simplicity, I assume that each player i’s level is i.i.d. drawn from the the
distribution p = (pk)

∞
k=0 where pk > 0 for all k. Proposition 8 characterizes the DCH solution

for the sequential three-person three-period dirty-faces games.

Proposition 8. For any sequential three-person three-period dirty-faces game, the level-

dependent strategy profile of the DCH solution satisfies that for any i ∈ N ,

1. σk
i (t, OO) = 1 for all k ≥ 1 and 1 ≤ t ≤ 3.

2. σ1
i (t, OX) = 0 for any 1 ≤ t ≤ 3. Moreover, for any k ≥ 2,

(1) σk
i (1, OX) = 0,
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(2) σk
i (2, OX) = 1 if and only if

ᾱ ≥
(
1
2
− 1

4
γkδ
)
p0(

1
2
− 1

4
γkδ
)
p0 + (1− γkδ)

∑k−1
j=1 pj

where γk ≡
[
1
4
p0 +

∑k−1
j=1 pj

]
/
[
1
2
p0 +

∑k−1
j=1 pj

]
,

(3) σk
i (3, OX) = 1 if and only if

ᾱ ≥
1
4
p0

1
4
p0 +

∑k−1
j=1 pj

,

3. σ1
i (t,XX) = σ2

i (t,XX) = 0 for any 1 ≤ t ≤ 3. Moreover, for any k ≥ 3,

(1) σk
i (1, XX) = σk

i (2, XX) = 0,

(2) σk
i (3, XX) = 1 if and only if there exists 2 ≤ l ≤ k − 1 such that σl

i(2, OX) = 1

with L∗
k ≡ minj

{
j < k : σj

i (2, OX) = 1
}
, and

ᾱ ≥ max

⎧⎨
⎩

(
1
2
− 1

4
γL∗

k
δ
)
p0(

1
2
− 1

4
γL∗

k
δ
)
p0 + (1− γL∗

k
δ)
∑L∗

k−1

j=1 pj
,

(
1
4
p0 +

∑L∗
k−1

j=1 pj
1
4
p0 +

∑k−1
j=1 pj

)2
⎫⎬
⎭ .

Proof.

Step 1: Consider any i ∈ N . If x−i = OO, then player i knows his face is dirty immediately.
Therefore, C is a dominant strategy, suggesting σk

i (t, OO) = 1 for all k ≥ 1 and 1 ≤ t ≤ 3.
If x−i = OX, player i’s belief of having a dirty face at period 1 is p. Hence, the expected
payoff of choosing C at period 1 is pα − (1− p) < 0, implying σk

i (1, OX) = 0 for all k ≥ 1.
Similarly, if x−i = XX, the beliefs of having a dirty face at period 1 and 2 are p, which
suggests σk

i (1, XX) = σk
i (2, XX) = 0 for all k ≥ 1.

In addition, level 1 players believe other players’ actions don’t convey any information
about their own face types, so σ1

i (t, OX) = σ1
i (t,XX) = 0 for any 1 ≤ t ≤ 3. Since level 1

players behave exactly the same when observing OX and XX, level 2 player i’s belief about
having a dirty face at period 3 is still p when x−i = XX, implying σ2

i (3, XX) = 0.

Step 2: In this step, I prove that (
1
2
− 1

4
γkδ
)
p0(

1
2
− 1

4
γkδ
)
p0 + (1− γkδ)

∑k−1
j=1 pj

is decreasing in k for all k ≥ 2 where γk ≡
[
1
4
p0 +

∑k−1
j=1 pj

]
/
[
1
2
p0 +

∑k−1
j=1 pj

]
. To prove

this, it suffices to prove that for any l ≥ 2,(
1
2
− 1

4
γlδ
)
p0(

1
2
− 1

4
γlδ
)
p0 + (1− γlδ)

∑l−1
j=1 pj

≥
(
1
2
− 1

4
γl+1δ

)
p0(

1
2
− 1

4
γl+1δ

)
p0 + (1− γl+1δ)

∑l
j=1 pj

⇐⇒
(
−1

4
γl+1δ +

1

4
γlδ

) l−1∑
j=1

pj + (1− γl+1δ)

(
1

2
− 1

4
γlδ

)
pl ≥ 0
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Notice that the LHS of the inequality is decreasing in δ since

d

dδ

[(
−1

4
γl+1δ +

1

4
γlδ

) l−1∑
j=1

pj + (1− γl+1δ)

(
1

2
− 1

4
γlδ

)
pl

]

=

(
−1

4
γl+1 +

1

4
γl

)
︸ ︷︷ ︸

<0

l−1∑
j=1

pj +

(
−1

2
γl+1 − 1

4
γl +

1

2
γlγl+1δ

)
︸ ︷︷ ︸

<− 1
2
γl+1− 1

4
γl+

1
2
γlγl+1

≤−
√

1
2
γlγl+1+

1
2
γlγl+1 < 0

pl < 0.

Therefore, it suffices to prove that the inequality holds when δ = 1. That is,(
−1

4
γl+1 +

1

4
γl

) l−1∑
j=1

pj + (1− γl+1)

(
1

2
− 1

4
γl

)
pl ≥ 0,

which holds because the inequality is equivalent to

pl∑l−1
j=1 pj

≥
1
4
(γl+1 − γl)

(1− γl+1)
(
1
2
− 1

4
γl
) = pl

3
4
p0 +

∑l−1
j=1 pj

.

Step 3: In this step, I characterize level k player i’s behavior when x−i = OX for all k ≥ 2
by induction on k. I first prove the base case where k = 2. At period 3, level 2 player i’s
belief about having a dirty face is

μ2
i (X|3, OX) =

∑
τ−i

μ2
i (X, τ−i|3, OX) =

p
(
1
4
p0 + p1

)
1
4
p0 + pp1

.

Therefore, it is optimal to choose C at period 3 if and only if

μ2
i (X|3, OX)α− (1− μ2

i (X|3, OX)) ≥ 0 ⇐⇒ ᾱ ≥
1
4
p0

1
4
p0 + p1

.

At period 2, level 2 player i’s belief about having a dirty face is

μ2
i (X|2, OX) =

∑
τ−i

μ2
i (X, τ−i|2, OX) =

p
(
1
2
p0 + p1

)
1
2
p0 + pp1

,

and the belief about that the two other players wait at period 2 is(
1
4
p0 + p1

) (
1
4
p0 + pp1

)(
1
2
p0 + p1

) (
1
2
p0 + pp1

) ≡ γ2

( 1
4
p0 + pp1

1
2
p0 + pp1

)
.

Conditional on reaching period 3, the payoff of waiting is 0, and the expected payoff of C is

δ2

1
4
p0 + pp1

[
pα

(
1

4
p0 + p1

)
− (1− p)

(
1

4
p0

)]
.
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Therefore, it is optimal to choose C at period 2 if and only if

δ
1
2
p0 + pp1

[
pα

(
1

2
p0 + p1

)
− (1− p)

(
1

2
p0

)]

≥ max

{
γ2

( 1
4
p0 + pp1

1
2
p0 + pp1

)
δ2

1
4
p0 + pp1

[
pα

(
1

4
p0 + p1

)
− (1− p)

(
1

4
p0

)]
, 0

}

⇐⇒ ᾱ ≥ max

{ (
1
2
− 1

4
γ2δ
)
p0(

1
2
− 1

4
γ2δ
)
p0 + (1− γ2δ)p1

,
1
2
p0

1
2
p0 + p1

}
.

Furthermore, because for any δ ∈ (0, 1),(
1
2
− 1

4
γ2δ
)
p0(

1
2
− 1

4
γ2δ
)
p0 + (1− γ2δ)p1

>
1
2
p0

1
2
p0 + p1

,

it is optimal for level 2 players to claim at period 2 if and only if

ᾱ ≥
(
1
2
− 1

4
γ2δ
)
p0(

1
2
− 1

4
γ2δ
)
p0 + (1− γ2δ)p1

.

This completes the proof for level 2 players.

Suppose there is K > 2 such that the statement holds for any level 2 ≤ k ≤ K. I now
prove the statement holds for level K + 1 players. By the same argument as in the proof
of Proposition 4, level K + 1 players would choose C when it is already optimal for level K
players to choose C. Therefore, for period 3, it suffices to consider the case where

ᾱ <
1
4
p0

1
4
p0 +

∑K−1
j=1 pj

.

By induction hypothesis, we know for every level 1 ≤ k ≤ K players, they will wait for three
periods when observing one dirty face. Therefore, level K + 1 player i’s belief about having
a dirty face at period 3 when x−i = OX is

μK+1
i (X|3, OX) =

∑
τ−i

μK+1
i (X, τ−i|3, OX) =

p
(

1
4
p0 +

∑K
j=1 pj

)
1
4
p0 + p

∑K
j=1 pj

.

Consequently, level K + 1 players would choose C at period 3 if and only if

μK+1
i (X|3, OX)α− (1− μK+1

i (X|3, OX)) ≥ 0 ⇐⇒ ᾱ ≥
1
4
p0

1
4
p0 +

∑K
j=1 pj

.

For period 2, by step 2 and the induction hypothesis, it suffices to consider

ᾱ <

(
1
2
− 1

4
γK+1δ

)
p0(

1
2
− 1

4
γK+1δ

)
p0 + (1− γK+1δ)

∑K
j=1 pj

;
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otherwise, level K players would choose C at period 2 and so do level K + 1 players. By
similar argument, level K + 1 player i will choose C at period 2 if and only if

δ
1
2
p0 + p

∑K
j=1 pj

[
pα

(
1

2
p0 +

K∑
j=1

pj

)
− (1− p)

(
1

2
p0

)]

≥ max

{
γK+1

(
δ2

1
2
p0 + p

∑K
j=1 pj

)[
pα

(
1

4
p0 +

K∑
j=1

pj

)
− (1− p)

(
1

4
p0

)]
, 0

}
,

which is equivalent to

ᾱ ≥
(
1
2
− 1

4
γK+1δ

)
p0(

1
2
− 1

4
γK+1δ

)
p0 + (1− γK+1δ)

∑K
j=1 pj

.

Step 4: This step characterizes level k player i’s behavior when x−i = XX for all k ≥ 3.
Consider any level k ≥ 3. For level k players, they update their beliefs about having a dirty
face at period 3 only if there is some lower level of players that chooses C at period 2 when
observing one dirty face. That is, σk

i (3, XX) = 1 only if there is 2 ≤ l ≤ k − 1 such that

ᾱ ≥
(
1
2
− 1

4
γlδ
)
p0(

1
2
− 1

4
γlδ
)
p0 + (1− γlδ)

∑l−1
j=1 pj

.

If there exists such level of players, let L∗
k denote the lowest level below k that would choose

C at period 2 when observing one dirty face. In this case, level k player i’s belief about
having a dirty face at period 3 is

μk
i (X|3, XX) =

p
(

1
4
p0 +

∑k−1
j=1 pj

)2
p
(

1
4
p0 +

∑k−1
j=1 pj

)2
+ (1− p)

(
1
4
p0 +

∑L∗
k−1

j=1 pj

)2 ,
and expected payoff of C is greater than 0 if and only if

μk
i (X|3, XX)α− (1− μk

i (X|3, XX)) ≥ 0 ⇐⇒ ᾱ ≥
(

1
4
p0 +

∑L∗
k−1

j=1 pj
1
4
p0 +

∑k−1
j=1 pj

)2

.

Therefore, we can conclude that σk
i (3, XX) = 1 if and only if

ᾱ ≥ max

⎧⎨
⎩

(
1
2
− 1

4
γL∗

k
δ
)
p0(

1
2
− 1

4
γL∗

k
δ
)
p0 + (1− γL∗

k
δ)
∑L∗

k−1

j=1 pj
,

(
1
4
p0 +

∑L∗
k−1

j=1 pj
1
4
p0 +

∑k−1
j=1 pj

)2
⎫⎬
⎭ .

This completes the proof of step 4 and this proposition. �
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C.2 DCH Solution for Simultaneous Games

The strategically equivalent simultaneous three-person three-period dirty-faces game is a
one-period game, in which all three players simultaneously choose an action from the set
S = {1, 2, 3, 4}. Action t ≤ 3 represents the plan to wait from period 1 to t − 1 and
claim in period t. Action 4 is the plan to always wait. In the simultaneous three-person
three-period dirty-faces game, a mixed strategy is a mapping from the observed face type
(x−i ∈ {OO,OX,XX}) to a probability distribution over the action set. That is,

σ̃i : {OO,OX,XX} → Δ(S).

Suppose (si, s−i) is the realized action profile. If si is the smallest number, then the payoff
for player i is computed as the case where player i claims to have a dirty face at period si;
otherwise, player i’s payoff is 0. The equilibrium analysis for the simultaneous game is the
same as the sequential game. However, as characterized by Proposition 9, the DCH solution
for the simultaneous games differs from the DCH solution for the sequential games.

Proposition 9. For any simultaneous three-person three-period dirty-faces game, the level-

dependent strategy profile of the DCH solution satisfies that for i ∈ N ,

1. σ̃k
i (OO) = 1 for all k ≥ 1.

2. σ̃1
i (OX) = 4. Moreover, for any k ≥ 2, σ̃k

i (OX) > 1 and

(1) σ̃k
i (OX) = 2 if and only if

ᾱ ≥
3
4
p0

(
3
4
p0 +

∑k−1
j=1 pj

)
− δ
(
1
2
p0
) (

1
2
p0 +

∑k−1
j=1 pj

)
(

3
4
p0 +

∑k−1
j=1 pj

)2
− δ
(

1
2
p0 +

∑k−1
j=1 pj

)2 ,

(2) σ̃k
i (OX) ≤ 3 if and only if

ᾱ ≥
1
2
p0

1
2
p0 +

∑k−1
j=1 pj

,

(3) σ̃1
i (XX) = σ̃2

i (XX) = 4. Furthermore, for any k ≥ 3, σ̃k
i (XX) > 2, and σ̃k

i (XX) =

3 if and only if there exists 2 ≤ l ≤ k − 1 such that σ̃l
i(OX) = 2 with L̃∗

k =

minj

{
j < k : σ̃j

i (OX) = 2
}
, and

ᾱ ≥ max

⎧⎪⎨
⎪⎩

3
4
p0

(
3
4
p0 +

∑L̃∗
k−1

j=1 pj

)
− δ
(
1
2
p0
) (

1
2
p0 +

∑L̃∗
k−1

j=1 pj

)
(

3
4
p0 +

∑L̃∗
k−1

j=1 pj

)2
− δ
(

1
2
p0 +

∑L̃∗
k−1

j=1 pj

)2 ,
1
2
p0 +

∑L̃∗
k−1

j=1 pj
1
2
p0 +

∑k−1
j=1 pj

⎫⎪⎬
⎪⎭ .
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Proof.

Step 1: Consider any i ∈ N . If x−i = OO, player i knows his face is dirty immediately,
suggesting 1 is a dominant strategy and σ̃k

i (OO) = 1 for any k ≥ 1. If x−i = OX or XX,
the expected payoff of 1 is pα− (1− p) < 0, implying σ̃k

i (OX) ≥ 2 and σ̃k
i (XX) ≥ 2 for any

k ≥ 1. Moreover, level 1 players believe all other players are level 0, so when observing OX
or XX, the expected payoff of t ∈ {2, 3} is

p

[
δt−1α

(
5− t

4

)2
]
+ (1− p)

[
−δ2

(
5− t

4

)2
]
= δt−1

(
5− t

4

)2

[pα− (1− p)] < 0,

implying σ̃1
i (OX) = σ̃1

i (XX) = 4.

In addition, σ̃k
i (XX) ≥ 3 for all k ≥ 1 can be proven by induction on k. From the previous

calculation, we know σ̃1
i (XX) = 4, which establishes the base case. Suppose σ̃k

i (XX) ≥ 3
for all 1 ≤ i ≤ K for some K > 1. It suffices to prove σ̃K+1

i (XX) ≥ 3 by showing 2 is a
strictly dominated strategy for level K + 1 players. This is strictly dominated because

p

⎡
⎣δα

(
3

4

p0∑K
j=0 pj

+

∑K
j=1 pj∑K
j=0 pj

)2
⎤
⎦+ (1− p)

⎡
⎣−δ

(
3

4

p0∑K
j=0 pj

+

∑K
j=1 pj∑K
j=0 pj

)2
⎤
⎦

= δ

(
3

4

p0∑K
j=0 pj

+

∑K
j=1 pj∑K
j=0 pj

)2

[pα− (1− p)] < 0.

Step 2: This step establishes a monotonic result: for any K > 1, if σ̃l+1
i (OX) ≤ σ̃l

i(OX)
for all 1 ≤ l ≤ K − 1, then σ̃K+1

i (OX) ≤ σ̃K
i (OX). If σ̃K

i (OX) = 4, then there is nothing
to prove. Suppose σ̃l+1

i (OX) ≤ σ̃l
i(OX) for all 1 ≤ l ≤ K − 1. If σ̃K

i (OX) = 3, then it is
necessary that level K player’s expected payoff of choosing 3 is non-negative. Namely,

δ2

(
1

2

p0∑K−1
j=0 pj

+

∑K−1
j=1 pj∑K−1
j=0 pj

)[
pα

(
1

2

p0∑K−1
j=0 pj

+

∑K−1
j=1 pj∑K−1
j=0 pj

)
− (1− p)

(
1

2

p0∑K−1
j=0 pj

)]
≥ 0,

which implies:

δ2

(
1

2

p0∑K
j=0 pj

+

∑K
j=1 pj∑K
j=0 pj

)[
pα

(
1

2

p0∑K
j=0 pj

+

∑K
j=1 pj∑K
j=0 pj

)
− (1− p)

(
1

2

p0∑K
j=0 pj

)]
> 0.

suggesting σ̃K+1
i (OX) ≤ 3. If σ̃K

i (OX) = 2, it suffices to prove σ̃K+1
i (OX) = 2 as well.

Notice that if σ̃K
i (OX) = 2, then it is necessary for level K players that 2 dominates 3 and

4. Let M be the lowest level of players that would choose 2 when observing OX. Then level
K player’s expected payoff of choosing 2 would satisfy that

δ

(
3

4
p0 +

K−1∑
j=1

pj

)[
pα

(
3

4
p0 +

K−1∑
j=1

pj

)
− (1− p)

(
3

4
p0

)]

≥ max

{
δ2

(
1

2
p0 +

M−1∑
j=1

pj

)[
pα

(
1

2
p0 +

M−1∑
j=1

pj

)
− (1− p)

(
1

2
p0

)]
, 0

}
,
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which implies:

δ

(
3

4
p0 +

K∑
j=1

pj

)[
pα

(
3

4
p0 +

K∑
j=1

pj

)
− (1− p)

(
3

4
p0

)]

≥ max

{
δ2

(
1

2
p0 +

M−1∑
j=1

pj

)[
pα

(
1

2
p0 +

M−1∑
j=1

pj

)
− (1− p)

(
1

2
p0

)]
, 0

}
,

suggesting that σ̃K+1
i (OX) = 2.

Step 3: In this step, I characterize level k player i’s behavior as x−i = OX for all k ≥ 2 by
induction on k. Level 2 player i’s expected payoff of choosing t ∈ {2, 3} is

δt−1

(
5− t

4

p0
p0 + p1

+
p1

p0 + p1

)[
pα

(
5− t

4

p0
p0 + p1

+
p1

p0 + p1

)
− (1− p)

(
5− t

4

p0
p0 + p1

)]
︸ ︷︷ ︸

increasing in t

.

Therefore, σ̃2
i (OX) ≤ 3 if and only if

pα

(
1

2
p0 + p1

)
− (1− p)

(
1

2
p0

)
≥ 0 ⇐⇒ ᾱ ≥

1
2
p0

1
2
p0 + p1

,

and σ̃2
i (OX) = 2 if and only if

δ

(
3

4
p0 + p1

)[
pα

(
3

4
p0 + p1

)
− (1− p)

(
3

4
p0

)]

≥ max

{
δ2
(
1

2
p0 + p1

)[
pα

(
1

2
p0 + p1

)
− (1− p)

(
1

2
p0

)]
, 0

}

⇐⇒ ᾱ ≥ max

{
3
4
p0
(
3
4
p0 + p1

)− δ
(
1
2
p0
) (

1
2
p0 + p1

)(
3
4
p0 + p1

)2 − δ
(
1
2
p0 + p1

)2 ,
3
4
p0

3
4
p0 + p1

}
.

Since for any δ ∈ (0, 1),

3
4
p0
(
3
4
p0 + p1

)− δ
(
1
2
p0
) (

1
2
p0 + p1

)(
3
4
p0 + p1

)2 − δ
(
1
2
p0 + p1

)2 >
3
4
p0

3
4
p0 + p1

,

2 is optimal for level 2 players if and only if

ᾱ ≥
3
4
p0
(
3
4
p0 + p1

)− δ
(
1
2
p0
) (

1
2
p0 + p1

)(
3
4
p0 + p1

)2 − δ
(
1
2
p0 + p1

)2 .

Now suppose there is K > 1 such that the statement holds for any 1 ≤ k ≤ K. We
want to show it also holds for level K + 1 players. Notice that by induction hypothesis,
σ̃l+1
i (OX) ≤ σ̃l

i(OX) for all 1 ≤ l ≤ K − 1, implying σ̃K+1
i (OX) ≤ σ̃K

i (OX) by step 2. If
σ̃K
i (OX) ≤ 3, then σ̃K+1

i (OX) ≤ 3 by step 2. Therefore, it suffices to focus on the case
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where σ̃l
i(OX) = 4 for all 1 ≤ l ≤ K. In this case, level K + 1 player’s expected payoff of

choosing t ∈ {2, 3} is:

δt−1

(
5− t

4

p0∑K
j=0 pj

+

∑K
j=1 pj∑K
j=0 pj

)[
pα

(
5− t

4

p0∑K
j=0 pj

+

∑K
j=1 pj∑K
j=0 pj

)
− (1− p)

(
5− t

4

p0∑K
j=0 pj

)]
,

suggesting 4 is a dominated strategy if and only if

ᾱ ≥
1
2
p0

1
2
p0 +

∑K
j=1 pj

.

If σ̃K
i (OX) = 2, then σ̃K+1

i (OX) = 2 by step 2. Thus, it suffices to consider the case where
σ̃l
i(OX) ≥ 3 for all 1 ≤ l ≤ K. In this case, σ̃K+1

i (OX) = 2 if and only if

δ

(
3

4
p0 +

K∑
j=1

pj

)[
pα

(
3

4
p0 +

K∑
j=1

pj

)
− (1− p)

(
3

4
p0

)]

≥ max

{
δ2

(
1

2
p0 +

K∑
j=1

pj

)[
pα

(
1

2
p0 +

K∑
j=1

pj

)
− (1− p)

(
1

2
p0

)]
, 0

}

⇐⇒ ᾱ ≥
3
4
p0

(
3
4
p0 +

∑K
j=1 pj

)
− δ
(
1
2
p0
) (

1
2
p0 +

∑K
j=1 pj

)
(

3
4
p0 +

∑K
j=1 pj

)2
− δ
(

1
2
p0 +

∑K
j=1 pj

)2 .

Step 4: Lastly, this step characterizes level k player i’s behavior when x−i = XX for level
k ≥ 3. Consider any level K ≥ 3. For level k players, they would choose 3 only if there is
some level 2 ≤ l ≤ k − 1 such that σ̃l

i(OX) = 2. Let L̃∗
k be the lowest level below k that

would choose 2 when seeing one dirty face. Then level k player i’s expected payoff of 3 is:

δ2

(
1

2

p0∑k−1
j=0 pj

+

∑k−1
j=1 pj∑k−1
j=0 pj

)⎡⎣pα
(
1

2

p0∑k−1
j=0 pj

+

∑k−1
j=1 pj∑k−1
j=0 pj

)
− (1− p)

⎛
⎝1

2

p0∑k−1
j=0 pj

+

∑L̃∗
k−1

j=1 pj∑k−1
j=0 pj

⎞
⎠
⎤
⎦ ,

which dominates 4 if and only if

ᾱ ≥
1
2
p0 +

∑L̃∗
k−1

j=0 pj
1
2
p0 +

∑k
j=0 pj

.

Coupled with the existence of L̃∗
k, σ̃

k
i (XX) = 3 if and only if

ᾱ ≥ max

⎧⎪⎨
⎪⎩

3
4
p0

(
3
4
p0 +

∑L̃∗
k−1

j=1 pj

)
− δ
(
1
2
p0
) (

1
2
p0 +

∑L̃∗
k−1

j=1 pj

)
(

3
4
p0 +

∑L̃∗
k−1

j=1 pj

)2
− δ
(

1
2
p0 +

∑L̃∗
k−1

j=1 pj

)2 ,
1
2
p0 +

∑L̃∗
k−1

j=1 pj
1
2
p0 +

∑k−1
j=1 pj

⎫⎪⎬
⎪⎭ .

This completes the proof of this proposition. �
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C.3 Illustrative Example

To illustrate the representation effect in three-person games, I characterize level 3 players’
behavior in both the sequential and simultaneous games when the distribution of levels
follows Poisson(1.5). Similar to the analysis of two-person games, the set of dirty-faces
games is the unit square on the (δ, ᾱ)-plane.

When observing one dirty face and one clean face, level 3 players cannot tell their faces
for sure in period 1, so they will wait, no matter in sequential games or in simultaneous
games. In period 2, level 3 players will claim to have a dirty face if and only if the expected
payoff of C is higher than the continuation value of choosing W . By Proposition 8 and 9,
level 3 players will claim in period 2 in the sequential game if and only if

ᾱ ≥
(
1
2
− 1

4
γ3δ
)
p0(

1
2
− 1

4
γ3δ
)
p0 + (1− γ3δ)(p1 + p2)

=
100− 46δ

625− 529δ
,

and choose 2 in the simultaneous game if and only if

ᾱ ≥
3
4
p0
(
3
4
p0 + p1 + p2

)− δ
(
1
2
p0
) (

1
2
p0 + p1 + p2

)(
3
4
p0 + p1 + p2

)2 − δ
(
1
2
p0 + p1 + p2

)2 =
162− 100δ

729− 625δ
.

At period 3, level 3 players will claim to have a dirty face if and only if the expected payoff
of C is positive. Therefore, in the sequential game, level 3 players will claim in period 3 if
and only if

ᾱ ≥
1
4
p0

1
4
p0 + p1 + p2

=
2

23
,

while in the simultaneous game, they will not choose always wait if and only if

ᾱ ≥
1
4
p0

1
4
p0 + p1 + p2

=
4

25
.

When observing two dirty faces, level 3 players cannot tell their face types in the first
two periods, so they will wait in the first two periods. At period 3, level 3 players will claim
if and only if (1) level 2 players will claim at period 2 when seeing only one dirty face,42 and
(2) the expected payoff of C is positive. Therefore, in the sequential game, it is optimal to
claim at period 3 if and only if

ᾱ ≥ max

{
16− 7δ

64− 49δ
,

196

529

}
.

In the simultaneous game, it is optimal to claim at period 3 when observing two dirty faces
if and only if

ᾱ ≥ max

{
27− 16δ

81− 64δ
,

16

25

}
.

42Otherwise, if both level 1 and 2 players wait at period 2 when seeing only one dirty face, level 3 players

cannot make inferences about their face types when the game proceeds to period 3.
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Level 3 players’ DCH optimal stopping periods in both sequential and simultaneous games
are plotted in Figure A.1. The definition of optimal stopping periods is naturally extended
to three-person games. From this figure, we can observe two features that are different from
the two-person games. First, when observing one dirty face and δ → 1, level 3 players will
claim at period 2 if ᾱ ≥ 9/16. However, in two-person games, when δ → 1, players will
always wait till the last period. This is because when there are more players, the game is
more likely to be randomly terminated, causing the players to claim earlier even if the payoff
is not discounted. Second, when observing two dirty faces, level 3 players’ behavior at period
3 depends on δ even if this is the last period. The reason is that level 3 players’ belief at
period 3 depends on level 2 players’ behavior at period 2 which depends on δ.

Figure A.1: Level 3 players’ DCH stopping periods in sequential (left column) and simulta-

neous (right column) three-person three-period dirty-faces games where the distribution of

levels follows Poisson(1.5).
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Remark 5. In this illustrative example, DCH predicts level 3 players tend to claim earlier

in sequential games than in simultaneous games because (1) at information set (2, OX),

(162 − 100δ)/(729 − 625δ) > (100 − 46δ)/(625 − 529δ), (2) at information set (3, OX),

4/25 > 2/23, and (3) at information set (3, XX),

max

{
27− 16δ

81− 64δ
,

16

25

}
> max

{
16− 7δ

64− 49δ
,

196

529

}
.

To summarize, the analysis of three-person three-period games demonstrates how the
DCH solution varies with the representations and the number of players in a game. The
prediction of the equilibrium theory only depends on the number of dirty faces, not the
number of players. This sharply contrasts with DCH. The intuition is that when there are
more players, the game is more likely to be randomly terminated by level 0 players, and
hence strategic players’ behavior is affected.
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D Detailed Analysis of Bayer and Chan (2007) Data

(For Online Publication)

D.1 Data Description

This section revisits the dirty-faces experimental data by Bayer and Chan (2007). The
description of the experimental setting can be found in the main text section 6.1, and the
instructions and screenshots can be found in Bayer and Chan (2007) Appendix A.

Following previous notations, I use (t, x−i) to denote the situation where subject i sees
type x−i at period t. After excluding the data from the case where there is no public
announcement, the raw data at each information set is reported in Table A.1. Each entry
in the table states the number of observations and the percentage of the choices that follow
the equilibrium predictions. For instance, at information set (t, x−i) = (2, X), there are 170
choices and 62 percent of the choices are C, which is the action predicted by the equilibrium.

Table A.1: Experimental Data from Bayer and Chan (2007)

Number of Players

2 3

x−i O X OO OX XX

EQ C WC C WC WWC

Period Number of Obs (EQ %)

1 123 (0.94) 391 (0.79) 48 (0.92) 280 (0.61) 320 (0.76)

2 6 (0.50) 170 (0.62) 2 (0.50) 60 (0.58) 145 (0.79)

3 — — — 10 (0.20) 56 (0.36)

Note: In Treatment 1, there are 21 groups of subjects (42 subjects in total), and in

Treatment 2, there are 16 groups of subjects (48 subjects in total). Because each

group plays 14 rounds, the data set consists of (21 + 16)× 14 = 518 games.

From Table A.1, we can observe that the behavior aligns with the equilibrium prediction
when players do not see any dirty face. In this situation (x−i = O or OO), players are
aware that their face type is X and choose C in period 1. However, the behavior becomes
less consistent with the equilibrium as the reasoning complexity increases. When players see
only one dirty face (x−i = X or OX), they should realize that their face type is X as the
game progresses to period 2. However, the empirical data show that only 62% and 58% of
players in Treatment 1 and 2, respectively, are able to do so. Furthermore, when players see
two dirty faces (x−i = XX), only 30% of the players claim to have a dirty face in period 3.

These observations suggest that the equilibrium fails to explain a significant portion of
the data. In the following analysis, I compare the fitness of the DCH model with that of
the standard CH model and the agent quantal response equilibrium (AQRE) proposed by
McKelvey and Palfrey (1998). By comparing the DCH and the standard CH models, I can
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quantify the improvement achieved by incorporating learning from past actions into the CH
framework. On the other hand, AQRE is an equilibrium model designed for extensive games,
where players make stochastic choices and assume that other players do the same. The
comparison between the DCH and AQRE demonstrates how hierarchical thinking models
can generate statistically comparable predictions as equilibrium-based models.

D.2 Likelihood Functions

This section derives the likelihood functions. For the cognitive hierarchy theories, I follow
Camerer et al. (2004) to assume the prior distribution of levels follows Poisson distribution.
Therefore, for both of the Poisson-DCH and the standard Poisson-CH, there is one parameter
to be estimated—the average number of levels τ . For AQRE, I follow McKelvey and Palfrey
(1998) to estimate the logit-AQRE which has a single parameter λ.

Poisson-CH Models

The Poisson-CH models assume each player’s level is i.i.d. drawn from (pk)
∞
k=0 where

pk ≡ e−ττ k

k!
, for all k = 0, 1, 2, . . .

and τ > 0. Because τ is the mean and variance of the Poisson distribution, the economic
meaning of τ is the average level of sophistication among the population.

I first construct the likelihood function for the Poisson-DCH model. For each subject i,
let Πi denote the set of information sets that subject i has encountered in the game, and let
Ii = (t, x−i) denote a generic information set. At any information set Ii, subject i can choose
ci ∈ {C,W}. Let Pk(ci|Ii, τ) be the probability of level k players choosing ci at information
set Ii. Moreover, let f(k|Ii, τ) be the posterior distribution of levels at information set Ii. At
period 1, f(k|Ii, τ) = e−ττ k/k!. For later periods, f(k|Ii, τ) given any τ can be analytically
solved by Proposition 4 (two-person games) and Proposition 8 (three-person games). Finally,
the predicted choice probability for ci at information set Ii is simply the aggregation of best
responses from all levels weighted by the proportion f(k|Ii, τ):

D(ci|Ii, τ) ≡
∞∑
k=0

f(k|Ii, τ)Pk(ci|Ii, τ).

Consequently, the log-likelihood function for the DCH model can be formed by aggregating
over every subject i, actions ci and information set Ii:

lnLD(τ) =
∑
i

∑
Ii∈Πi

∑
ci∈{W,C}

1{ci, Ii} ln [D(ci|Ii, τ)] ,

where 1{ci, Ii} is the indicator function which is 1 when subject i chooses ci at Ii.

Second, the log-likelihood function for the standard Poisson-CH model can be constructed
in the similar way. Given any τ , the standard Poisson-CH model predicts a probability distri-
bution over {1, . . . , T, T+1} (earliest period to choose C or alwaysW ) for each level of players
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conditional on the announcement and other players’ faces. Following previous notations, the
probability of level k subject i choosing t conditional on x−i is denoted by σ̃k

i (t|x−i), which
can be analytically solved by Proposition 5 (two-person games) and Proposition 9 (three-
person games). Therefore, subject i’s predicted choice probability for t ∈ {1, . . . , T, T + 1}
conditional on x−i is the aggregation of choice frequencies of all levels weighted by Poisson(τ):

S̃(t|x−i, τ) =
∞∑
k=0

e−ττ k

k!
σ̃k
i (t|x−i).

Since σ̃0
i (t|x−i) =

1
T+1

for all t, S̃(t|x−i, τ) > 0 for all t. Moreover, the conditional probability
to choose C or W at information set Ii = (t, x−i) can be computed by:

S(C|Ii, τ) =
S̃(t|x−i, τ)∑

t′≥t S̃(t′|x−i, τ)
and S(W |Ii, τ) = 1− S(C|Ii, τ).

Finally, the log-likelihood function for the standard CH model can be constructed by aggre-
gating over every subjects i, actions ci, and information set Ii:

lnLS(τ) =
∑
i

∑
Ii∈Πi

∑
ci∈{W,C}

1{ci, Ii} ln [S(ci|Ii, τ)] .

Logit-AQRE Model

For the purpose of illustrate, I only derive the likelihood function for two-person games. The
likelihood function for three-person games can be derived by a similar calculation.

Let Q(ci|Ii, λ) be the probability of subject i choosing ci at information set Ii predicted
by the logit-AQRE. In the two-person two-period dirty-faces game, each player’s strategy
is defined by a four-tuple (q1, q2, r1, r2) which corresponds to Q(C|1, O, λ), Q(C|2, O, λ),
Q(C|1, X, λ), and Q(C|2, X, λ), respectively. At information set (t, x−i) = (1, O), players
would estimate the payoff of C and W by

U1,O(C) = α + ε1,O,C

U1,O(W ) = δα(1− r1)q2 + ε1,O,U ,

where ε1,O,C and ε1,O,W are independent random variables with a Weibull distribution with
the precision parameter λ. Then the logit formula suggests

q1 =
1

1 + exp {λ [δα(1− r1)q2 − α]} .

Similarly, q2 can be expressed by:

q2 =
1

1 + exp {−δαλ} .
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On the other hand, when observing a dirty face and the game proceeds to period 2, players’
posterior beliefs become:

μ ≡ Pr(X|2, X) =
p(1− r1)

p(1− r1) + (1− p)(1− q1)
=

1

1 +
(

1−p
p

)(
1−q1
1−r1

) ,
and hence the expected payoff to choose C at information set (2, X) is:

δ [αμ− (1− μ)] = δ [(1 + α)μ− 1] .

As a result, r2 satisfies that

r2 =
1

1 + exp {λδ [1− (1 + α)μ]} .

Finally, the expected payoff of choosing C at information set (1, X) is αp − (1 − p), while
the expected payoff of W is

[p(1− r1) + (1− p)(1− q1)]︸ ︷︷ ︸
prob. to reach period 2

r2δ [(1 + α)μ− 1] ≡ A,

and therefore, r1 can be expressed by:

r1 =
1

1 + exp {λ [A+ (1− p)− αp]} .

As plugging p = 2/3, δ = 4/5 and α = 2/3 into the choice probabilities, we can obtain that

r1 =
1

1 + exp
{
λ
[

2
15
(1− r1)r2 − 4

15
(1− q1)r2 +

1
6

]}
r2 =

1

1 + exp
{
λ
[
4
5
− 2−2r1

3−2r1−q1

]}
q1 =

1

1 + exp
{
λ
[
1
5
(1− r1)q2 − 1

4

]}
q2 =

1

1 + exp
{−1

5
λ
} .

Given each λ, the system of four equations with four unknowns can be solved uniquely.
Besides, for each Ii, Q(W |Ii, λ) = 1 − Q(C|Ii, λ). Thus, the log-likelihood function can be
formed by aggregating over every subject i, action ci, and information set Ii:

lnLQ(λ) =
∑
i

∑
Ii∈Πi

∑
ci∈{W,C}

1{ci, Ii} ln [Q(ci|Ii, λ)] .
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D.3 Estimation Results

The Poisson-DCH, standard Poisson-CH and the AQRE models are estimated by maximum
likelihood estimation. Table A.2 reports the estimation results on Treatment 1 and Treat-
ment 2 data, showing the estimated parameters and the fitness of each model. Comparing
the fitness of these models, I find that the log-likelihood of DCH is significantly higher than
standard CH (Vuong Test p-value < 0.001 for both treatments), while it is not significantly
different from AQRE (Treatment 1: p-value = 0.144; Treatment 2: p-value = 0.184). This
result suggests in both Treatment 1 and 2, DCH outperforms the standard CH in capturing
the empirical patterns and generates predictions that are statistically comparable to other
equilibrium-based behavioral solution concepts.

Table A.2: Estimation Results for Treatment 1 and Treatment 2 Data

Two-Person Games Three-Person Games

DCH
Standard

CH
AQRE DCH

Standard

CH
AQRE

Parameters τ 1.269 1.161 — 0.370 0.140 —

S.E. (0.090) (0.095) — (0.043) (0.039) —

λ — — 7.663 — — 5.278

S.E. — — (0.493) — — (0.404)

Fitness LL -360.75 -381.46 -368.38 -575.30 -608.45 -565.05

AIC 723.50 764.91 738.76 1152.61 1218.89 1132.11

BIC 728.04 769.45 743.29 1157.43 1223.72 1136.93

Vuong Test 6.517 1.463 3.535 -1.330

p-value < 0.001 0.144 < 0.001 0.184

Note: There are 294 games (rounds × groups) in Treatment 1 and 224 games in Treatment 2.

Comparing the estimation results of Treatment 1 and 2, I observe that there is more
randomness in three-person games compared to two-person games. In two-person games,
the DCH estimates indicate that players can think 1.269 steps (95% C.I. = [1.093, 1.445])
on average, while in three-person games, players can only think an average of 0.370 steps
(95% C.I. = [0.286, 0.454]). Additionally, the estimation result of AQRE suggests that as
the game changes from two-person games to three-person games, the precision of decision-
making decreases significantly (from 7.663 to 5.278). This implies that players are less likely
to make best responses in three-person games.

To analyze the differences between the models in detail, I compare the choice probabil-
ities predicted by each model. Figure A.2 illustrates the choice probabilities in two-person
games, while Figure A.3 displays the choice probabilities in three-person games. Comparing
the DCH and the standard CH models, I observe that the standard CH model generally
underestimates the probability of choosing C in period 1. In two-person games, the em-
pirical frequencies of choosing C at information sets (1, O) and (1, X) are 0.943 and 0.210,
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respectively. Yet, the predictions of the standard CH model are 0.791 and 0.104 for the same
information sets. A similar pattern of underestimation is also evident in three-person games.
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Figure A.2: The choice probabilities in two-person games at different information sets. Each

panel plots the empirical choice frequencies and the predictions of different models at one

information set. The gray panel represents the off-equilibrium path information set.

The underestimation is primarily caused by the difference in the specifications of level
0 players’ behavior. In two-person games, the standard CH model assumes that level 0
players uniformly randomize across the set {1, 2, 3}. Consequently, the probability of level 0
players choosing C in period 1 according to the standard CH model is 1/3. In contrast, in
the DCH model, level 0 players uniformly randomize at every information set, resulting in a
probability of 1/2 for them to choose C. Similarly, in three-person games, the standard CH
model assumes that level 0 players uniformly randomize across the set {1, 2, 3, 4}, leading to
a probability of 1/4 for them to choose C in period 1. In contrast, in the DCH model, level 0
players’ behavior remains the same across both two-person and three-person games. These
differences in level 0 players’ behavior contribute to the underestimation of the probability
of choosing C in the standard CH model compared to DCH.

Moreover, the key difference between the CH approach and AQRE is highlighted in
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the off-equilibrium-path information sets.43 Conceptually, the reason why the game could
proceed to the off-equilibrium-path information sets differs between the CH approach and
AQRE. From the perspective of AQRE, the off-equilibrium-path information sets are reached
due to mistakes. As a result, AQRE predicts a high probability of choosing C at these off-
equilibrium-path information sets because the expected payoff of choosing C is much higher
than W at these information sets. By contrary, in the CH approach, the off-equilibrium-path
information sets are reached because the players are not sophisticated enough. For instance,
when observing no dirty face, players should immediately choose C since it is a dominant
strategy. If someone doesn’t choose C, they are definitely a level 0 player.
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Figure A.3: The choice probabilities in three-person games at different information sets.

Each panel plots the empirical choice frequencies and the predictions of different models at

one information set. The gray panels represent the off-equilibrium-path information sets.

From the choice probabilities, it can be observed that DCH provides the most accurate
predictions at off-path information sets, regardless of whether it is in two-person or three-
person games. At information sets (2, O) and (2, OO), the empirical choice probabilities of C

43When x−i = OO, the equilibrium predicts that players will choose C in period 1, resulting in the game

not proceeding beyond period 2. Similarly, when x−i = OX, the equilibrium suggests that players should

choose C in period 2, preventing the game from progressing to period 3.
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are 0.5, which are correctly predicted by DCH. Furthermore, at the information set (3, OX),
the empirical choice probability of C is 0.2, while the predictions of DCH, standard CH, and
AQRE are 0.291, 0.385, and 0.624, respectively.

Table A.3: Estimation Results for Pooled Data

DCH
Standard

CH
AQRE

Parameters τ 1.030 0.241 —

S.E. (0.060) (0.033) —

λ — — 6.235

S.E. — — (0.302)

Fitness LL -956.92 -1047.12 -940.65

AIC 1915.84 2096.23 1883.30

BIC 1921.22 2101.62 1888.69

Vuong Test 7.513 -1.363

p-value < 0.001 0.173

LR Test χ2
(1) 41.74 114.42 14.44

p-value < 0.001 < 0.001 < 0.001

Note: The likelihood ratio test is testing if the log-likelihood

of two-parameter models (Treatment 1 and 2) is significantly

higher than the log-likelihood of one-parameter models.

In addition, I estimate the three models using the pooled data, and the results are
reported in Table A.3. Consistent with the results from the two-person games and three-
person games, it can be observed that DCH provides a significantly better fit to the data
compared to the standard CH model (Vuong test: p-value < 0.001). However, there is no
statistically significant difference between DCH and AQRE (Vuong test p-value = 0.173).
Furthermore, I conduct a likelihood ratio test on all three models to assess whether allowing
different parameters for two-person and three-person games can significantly improve the
model fit. The results indicate that the heterogeneous models are significantly better than
the homogeneous models. Taken together, these findings lead to the conclusion that both
the level of sophistication and the precision vary with the complexity of the games.

To summarize, it is not surprising that DCH can provide a better explanation for the
data compared to the misspecified standard CH model in dynamic games. However, what
is surprising is that when the CH model is correctly specified, the estimated average level of
sophistication is 1.03, which falls within the expected range of a “regular” τ value between
1 and 2, as predicted by Camerer et al. (2004).
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E Supplementary Analysis for Experimental Data (For

Online Publication)

E.1 Supplementary Tables

This section includes all the supplementary tables from the experiment. Table A.4 lists the
empirical frequencies of choosing C at each information set for both treatments. Table A.5
presents the empirical frequencies of choosing C at information set (2, X) for different payoff
structures and treatments.

Table A.4: The Empirical Frequencies of C at Each Information Set

Sequential Treatment Simultaneous Treatment

x−i O X O X

Obs Claim % s.d. Obs Claim % s.d. Obs Claim % s.d. Obs Claim % s.d.

Periods

1 148 0.845 0.364 572 0.313 0.464 148 0.811 0.393 548 0.263 0.441

2 16 0.438 0.512 210 0.600 0.491 28 0.250 0.441 404 0.223 0.417

3 4 0.000 0.000 34 0.206 0.410 21 0.190 0.402 314 0.172 0.378

4 3 0.000 0.000 21 0.190 0.402 16 0.250 0.447 259 0.131 0.338

5 2 0.500 0.707 14 0.214 0.426 14 0.143 0.363 227 0.172 0.378

Note: For the simultaneous treatment, the choice data at the information set level are implied by the contingent strategies. For

instance, choosing the contingent strategy “claim at period 4” implies that the subject will wait from period 1 to period 3 and claim

in period 4.

Table A.5: The Empirical Frequencies of C at Information Set (2, X) for Different Games

Sequential Treatment Simultaneous Treatment

(δ, ᾱ) Obs Claim % s.d. Obs Claim % s.d.

Diagnostic Games

(0.60, 0.45) 39 0.564 0.502 78 0.256 0.439

(0.95, 0.80) 36 0.667 0.479 59 0.237 0.429

Control Games

(0.60, 0.80) 38 0.789 0.413 61 0.361 0.484

(0.80, 0.45) 35 0.543 0.505 67 0.134 0.344

(0.80, 0.80) 24 0.542 0.509 63 0.190 0.396

(0.95, 0.45) 38 0.474 0.506 76 0.171 0.379

To compute the measure of violation of invariance under strategic equivalence of each
payoff structure (δ, ᾱ), I run the following regression on the data of information set (2, X):

1{claim}i = α0 + α11{sequential}i + εi (A.7)
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where 1{claim}i is the dummy variable for player i choosing C and 1{sequential}i is the
dummy variable for the sequential treatment. Table A.6 reports the results for all payoff
structures. The standard errors are clustered at the session level.

Table A.6: The Magnitude of the Treatment Effect for Different Games

Payoff Structure

(δ, ᾱ) (0.60, 0.45) (0.60, 0.80) (0.80, 0.45) (0.80, 0.80) (0.95, 0.45) (0.95, 0.80)

Sequential Treatment 0.308*** 0.429* 0.409* 0.351** 0.303** 0.429**

(0.066) (0.160) (0.160) (0.101) (0.073) (0.110)

Constant 0.256*** 0.361*** 0.134*** 0.190*** 0.171** 0.237**

(0.057) (0.070) (0.018) (0.025) (0.049) (0.062)

N 117 99 102 87 114 95

R-squared 0.0914 0.1744 0.1889 0.1203 0.1028 0.1808

Note: The standard errors are clustered at the session level. * p < 0.05, ** p < 0.01, *** p < 0.001.

Finally, Table A.7 and A.8 report the distributions of reaction times when players see a
dirty face in the sequential and simultaneous treatments, respectively.

Table A.7: Reaction Times (seconds) when Seeing X in the Sequential Treatment

Periods Obs Mean s.d. Q1 Median Q3

1 572 11.29 9.845 5.359 7.574 13.72

2 210 8.172 6.531 4.495 6.106 9.745

3 34 7.530 3.816 4.785 6.277 11.44

4 21 6.901 4.135 3.150 6.299 9.767

5 14 7.663 5.597 3.231 6.677 8.856

All 851 10.20 8.917 5.000 7.152 12.08

Table A.8: Reaction Times (seconds) when Seeing X in the Simultaneous Treatment

Stopping Strategies Obs Mean s.d. Q1 Median Q3

Claim at 1 144 11.93 8.804 5.811 8.958 15.91

Claim at 2 90 13.85 10.18 7.191 11.32 16.62

Claim at 3 54 17.64 12.81 8.095 14.30 24.61

Claim at 4 34 21.15 15.16 12.32 16.46 22.96

Claim at 5 39 23.34 14.43 13.84 19.76 27.83

Always Wait 187 14.24 11.09 7.342 10.48 20.24

All 548 15.04 11.58 7.413 11.32 19.48
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E.2 Likelihood Functions

Quantal Cursed Sequential Equilibrium

The “Quantal Cursed Sequential Equilibrium (QCSE)” is a model applicable to multi-stage
games with observed actions. This model relaxes both the requirements of best responses
and Bayesian inference. Specifically, QCSE is a hybrid model, combining the Agent Quantal
Response Equilibrium (AQRE) proposed by McKelvey and Palfrey (1998) and the Cursed
Sequential Equilibrium introduced by Fong et al. (2023a).

Consider an assessment (μ, σ). For any player i and any history ht−1, the average behav-
ioral strategy profile of −i is defined as:

σ̄−i(a
t
−i|θi, ht−1) =

∑
θ−i∈Θ−i

μi(θ−i|θi, ht−1)σ−i(a
t
−i|θ−i, h

t−1).

In QCSE, players have incorrect perceptions about the behavioral strategies of other players.
Instead of thinking they are using σ−i, a χ-cursed type θi player i would believe the other
players are using a χ-weighted average of the average behavioral strategy and the true
behavioral strategy:

σχ
−i(a

t
−i|θ−i, θi, h

t−1) = χσ̄−i(a
t
−i|θi, ht−1) + (1− χ)σ−i(a

t
−i|θ−i, h

t−1).

The beliefs of player i about θ−i in QCSE are updated via Bayes’ rule, whenever possi-
ble, assuming other players are using the χ-cursed behavioral strategy rather than the true
behavioral strategy. This updating rule is called the χ-cursed Bayes’ rule. Specifically, an
assessment satisfies the χ-cursed Bayes’ rule if the belief system is derived from the Bayes’
rule while perceiving others are using σχ

−i rather than σ−i.

Consider any totally mixed strategy profile σ ∈ Σ0. As shown by Fong et al. (2023a), if
the belief system μ is derived from the χ-cursed Bayes’ rule, then player i’s cursed belief is
simply a linear combination of player i’s cursed belief at the beginning of that stage (with χ
weight) and the Bayesian posterior belief (with 1−χ weight). That is, for any ht = (ht−1, at),

μi(θ−i|θi, ht) = χμi(θ−i|θi, ht−1) + (1− χ)

[
μi(θ−i|θi, ht−1)σ−i(a

t
−i|θ−i, h

t−1)∑
θ′−i

μi(θ′−i|θi, ht−1)σ−i(at−i|θ′−i, h
t−1)

]
.

For any player i, any χ ∈ [0, 1], σ ∈ Σ0, and type profile θ ∈ Θ, let ρχi (h
T |θ, ht, σχ

−i, σi)
be i’s perceived conditional realization probability of terminal history hT ∈ HT at history
ht ∈ H\HT if the type profile is θ and i uses the behavioral strategy σi whereas perceives
other players’ using the cursed behavioral strategy σχ

−i. At every non-terminal history ht, a
χ-cursed player in QCSE will use χ-cursed Bayes’ rule to derive the posterior belief about
the other players’ types. Accordingly, a type θi player i’s conditional expected payoff at
history ht is:

ūi(σ|θi, ht) ≡
∑

θ−i∈Θ−i

∑
hT∈HT

μi(θ−i|θi, ht)ρχi (h
T |θ, ht, σχ

−i, σi)ui(h
T , θi, θ−i).
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Moreover, let ūi(a, σ|θi, ht) be the conditional expected payoff of player i of using a ∈ Ai(h
t)

with probability one, and using σi elsewhere.

In QCSE, there is a parameter λ ∈ [0,∞) that governs the precision of choices. Given
an assessment (μ, σ) where σ ∈ Σ0 and μ is derived from the χ-cursed Bayes’ rule, if (μ, σ)
is a QCSE for any player i, history ht, and type θi, then type θi player i will have choice
probabilities at ht that follow a multinomial logit distribution. In particular, the probability
of player i choosing a ∈ Ai(h

t) is

eλūi(a,σ|θi,ht)∑
a′∈Ai(ht) e

λūi(a′,σ|θi,ht)
.

In summary, for each λ ∈ [0,∞) and χ ∈ [0, 1], an assessment (μ, σ) is a QCSE if

1. The belief system is derived from the χ-cursed Bayes’ rule, and

2. For any player i, type θi, history ht and a ∈ Ai(h
t),

σi(a|θi, ht) =
eλūi(a,σ|θi,ht)∑

a′∈Ai(ht) e
λūi(a′,σ|θi,ht)

.

When estimating QCSE, constructing the likelihood function follows a similar process as
described in Appendix D.2. For each information set Ii, QCSE uniquely predicts the choice
probability of each ai, denoted as Q̄(ai|Ii, λ, χ), given λ and χ. The log-likelihood function
can be formed by aggregating over every subject i, action ai, and information set Ii:

lnLQ̄(λ, χ) =
∑
i

∑
Ii∈Πi

∑
ai∈Ai(Ii)

1{ai, Ii} ln
[
Q̄(ai|Ii, λ, χ)

]
.

Quantal Dynamic Cognitive Hierarchy Solution

The “Quantal Dynamic Cognitive Hierarchy Solution (QDCH)” is a natural extension of
DCH, where all strategic levels of players make quantal responses instead of best responses.
In particular, following previous notations, for any i ∈ N , τi ≥ 1, θ ∈ Θ, σ, and τ−i such that
τj < τi for any j 
= i, let P τi

i (hT |θ, ht−1, τ−i, σ
−τi
−i , σ

τi
i ) be level τi player i’s belief about the

conditional realization probability of hT ∈ HT at history ht−1 ∈ H\HT if the type profile is
θ, the level profile is τ , and player i uses στi

i . In this case, level τi player i’s expected payoff
at any ht ∈ H\HT is:

ūτi
i (σ|θi, ht) ≡∑
hT∈HT

∑
θ−i∈Θ−i

∑
{τ−i:τj<k ∀j �=i}

μτi
i (θ−i, τ−i | θi, ht)P τi

i (hT |θ, ht, τ−i, σ
−τi
−i , σ

τi
i )ui(h

T , θi, θ−i).

Similar to QCSE, in QDCH, there is a parameter λ ∈ [0,∞) that governs the precision of
choices. Let ūτi

i (a, σ|θi, ht) be the conditional expected payoff of level τi player i of using a ∈
Ai(h

t) with probability one, and using στi
i elsewhere. In QDCH, players’ choice probabilities

89



follow multinomial logit distributions. That is, in QDCH, the probability of level τi player i
choosing a ∈ Ai(h

t) at history ht is

στi
i (a|θi, ht) =

eλū
τi
i (a,σ|θi,ht)∑

a′∈Ai(ht) e
λū

τi
i (a′,σ|θi,ht)

.

When estimating QDCH, I assume the prior distribution of levels follows Poisson(τ). At
any information set Ii, let f(k|Ii, λ, τ) be the posterior distribution of levels at information
set Ii given λ and τ . In this case, the predicted choice probability for ai at Ii is the
aggregation of quantal responses from all levels weighted by the proportion f(k|Ii, λ, τ):

D̄(ai|Ii, λ, τ) ≡
∞∑
k=0

f(k|Ii, λ, τ)Pk(ai|Ii, λ, τ),

where Pk(ai|Ii, λ, τ) is the probability of level k players choosing ai at Ii. Consequently, the
log-likelihood function for QDCH can be formed by aggregating over every subject i, actions
ai and information set Ii:

lnLD̄(λ, τ) =
∑
i

∑
Ii∈Πi

∑
ai∈Ai(Ii)

1{ai, Ii} ln
[D̄(ai|Ii, λ, τ)

]
,

where 1{ai, Ii} is the indicator function which is 1 when subject i chooses ai at Ii.
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F Experimental Instructions (For Online Publication)

F.1 Sequential Treatment

General Instructions

Thank you for participating in the experiment. You are about to take part in a decision-
making experiment, in which your earnings will depend partly on your decisions, partly on
the decision of others, and partly on chance.

The entire session will take place through computer terminals, and all interactions between
participants will be conducted through the computers. Please do not talk or in any way try
to communicate with other participants during the session.

The main task of the experiment consists of 12 matches. Before the main task, you will be
asked to complete some comprehension questions. If you have any questions, please raise
your hand and the question will be answered so that everyone can hear.

In this experiment, you will earn “points” in each match. Your earnings will be determined
by the total points you earn in the 12 matches. Each point has a value of $0.02. That
is, every 100 points generates $2 in earnings for you. In addition to your earnings from
decisions, you will receive a show-up fee of $10. At the end of the experiment, your earnings
will be rounded up to the nearest dollar amount. All your earnings will be paid in cash
privately at the end of the experiment.

Main Task

1. In this experiment, you will be asked to make decisions in 12 matches. You will be
randomly matched with another participant into a group for every separate match. This
random pairing changes in every match.

2. Each match in this experiment corresponds to a game with the following rules.

• At the beginning of each match, each of you and the other participant will be randomly
assigned a “color” (either Red or White). After the colors are assigned, you will be
able to see the color of the other participant who is paired with you. However, you
cannot see your own color!

• There are 3 possible situations, and the probabilities of these situations are summarized
in the following table.

Situations Probabilities

You are Red and the other participant is White. p

You are White and the other participant is Red. p

Both of you are Red. 1− 2p
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In other words, there is always at least one Red participant among each group.

• Each match is played in rounds. In each match, there are at most 5 rounds. Your
color and the other participant’s color are fixed in the match. In each round, you and
the other participant will simultaneously choose either “I’m Red” or “wait.” If both
participants choose “wait,” then the match will continue to the next round. The match
will end:

(1) after round 5; or

(2) after some round where there is at least one participant choosing “I’m Red.”

This round is called the “terminal round.” Your payoff for this match depends on
which round the terminal round is, your action in the terminal round, and your color.
Important: your payoff does not depend on the other participant’s color.

• Payoffs:

(1) If you choose “wait” in the terminal round, you will get 0 points for this match
regardless of your color.

(2) If you choose “I’m Red” in the terminal round, your payoff for this match de-
pends on which round the terminal round is and your own color. The payoffs are
summarized in the following table. Notice that in each match, you and the other
participant will face the same payoff table.

Terminal Round 1 2 3 4 5

Your payoff if your color is Red p1 p2 p3 p4 p5

Your payoff if your color is White −w1 −w2 −w3 −w4 −w5

(3) Examples:

a. If you choose “I’m Red” in round 3, you will earn p3 points if your color is
Red and −w3 if your color is White.

b. If you choose “wait” in round 4 and the other participant chooses “I’m Red”
in the same round, you will get 0 points regardless of your color.

3. Decisions:

• After observing the other participant’s color, you and the other participant matched
with you will play the game according to the rules described above.

• Therefore, your payoffs are summarized as below.
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You choose “I’m Red” in the

terminal round

You choose “wait” in the

terminal round

Terminal Round Your color Red White Red or White

1 p1 −w1 0

2 p2 −w2 0

3 p3 −w3 0

4 p4 −w4 0

5 p5 −w5 0

• Each match starts from Round 1. You will make your decision in the following screen.

After you make your decision, the following would happen: If either you or the other
participant chooses “I’m Red,” then this round is the terminal round, and your payoff is
determined by your action in this round. However, if both you and the other participant
choose “wait,” the match continues to the next round, and you will make your decision
in the following screen.

Like the previous round, if either you or the other participant chooses “I’m Red,” the
match will end after this round. Yet if both you and the other participant choose
“wait,” the match will proceed to the next round.

• If the game proceeds to round 5, then the match will end after this round and your
payoff is determined by your action (and color) in round 5.

4. At the end of each match, there will be a summary of the match which includes both of
your colors, actions in each round (whenever applicable) and your own payoff for this match.

5. At the beginning of the experiment, you will start from 900 points. You will get paid in
cash based on your total points earned from the 12 matches. If your total point is negative,
you will only receive the show-up fee.

6. Important:
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a. After each match, you will be randomly paired with another participant in the next
match.

b. Your color and the other participant’s color will also be randomly re-drawn in each
match. The colors in each match are independent of the colors in other matches.

c. The probability distribution of colors and the payoff table will change in each match.

Please raise your hand if you have any questions. The question will be answered so that
everyone can hear.

F.2 Simultaneous Treatment

General Instructions

Thank you for participating in the experiment. You are about to take part in a decision-
making experiment, in which your earnings will depend partly on your decisions, partly on
the decision of others, and partly on chance.

The entire session will take place through computer terminals, and all interactions between
participants will be conducted through the computers. Please do not talk or in any way try
to communicate with other participants during the session.

The main task of the experiment consists of 12 matches. Before the main task, you will be
asked to complete some comprehension questions. If you have any questions, please raise
your hand and the question will be answered so that everyone can hear.

In this experiment, you will earn “points” in each match. Your earnings will be determined
by the total points you earn in the 12 matches. Each point has a value of $0.02. That
is, every 100 points generates $2 in earnings for you. In addition to your earnings from
decisions, you will receive a show-up fee of $10. At the end of the experiment, your earnings
will be rounded up to the nearest dollar amount. All your earnings will be paid in cash
privately at the end of the experiment.

Main Task

1. In this experiment, you will be asked to make decisions in 12 matches. You will be
randomly matched with another participant into a group for every separate match. This
random pairing changes in every match.

2. Each match in this experiment corresponds to a game with the following rules.
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• At the beginning of each match, each of you and the other participant will be randomly
assigned a “color” (either Red or White). After the colors are assigned, you will be
able to see the color of the other participant who is paired with you. However, you
cannot see your own color!

• There are 3 possible situations, and the probabilities of these situations are summarized
in the following table.

Situations Probabilities

You are Red and the other participant is White. p

You are White and the other participant is Red. p

Both of you are Red. 1− 2p

In other words, there is always at least one Red participant among each group.

• Each match is played in rounds. In each match, there are at most 5 rounds. Your
color and the other participant’s color are fixed in the match. In each round, you and
the other participant will simultaneously choose either “I’m Red” or “wait.” If both
participants choose “wait,” then the match will continue to the next round. The match
will end:

(1) after round 5; or

(2) after some round where there is at least one participant choosing “I’m Red.”

This round is called the “terminal round.” Your payoff for this match depends on
which round the terminal round is, your action in the terminal round, and your color.
Important: your payoff does not depend on the other participant’s color.

• Payoffs:

(1) If you choose “wait” in the terminal round, you will get 0 points for this match
regardless of your color.

(2) If you choose “I’m Red” in the terminal round, your payoff for this match de-
pends on which round the terminal round is and your own color. The payoffs are
summarized in the following table. Notice that in each match, you and the other
participant will face the same payoff table.

Terminal Round 1 2 3 4 5

Your payoff if your color is Red p1 p2 p3 p4 p5

Your payoff if your color is White −w1 −w2 −w3 −w4 −w5

(3) Examples:

a. If you choose “I’m Red” in round 3, you will earn p3 points if your color is
Red and −w3 if your color is White.
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b. If you choose “wait” in round 4 and the other participant chooses “I’m Red”
in the same round, you will get 0 points regardless of your color.

3. Decisions:

• Instead of playing the game round by round, after observing the other participant’s
color, you and the other participant are asked to simultaneously choose a “plan” which
describes how you would commit to play the game if the game were played round by
round. After you and the other participant both submit the plans, the computer will
implement the plans and your payoff is determined accordingly.

• Since the game ends after some participant chooses “I’m Red,” there are six possible
plans corresponding to the earliest round you intend to choose “I’m Red” or “always
wait.” Specifically, the six plans are listed below.

◦ “I’m Red in Round 1” means you plan to choose “I’m Red” in Round 1.

◦ “I’m Red in Round 2” means you plan to choose “wait” in Round 1 and choose
“I’m Red” in Round 2.

◦ “I’m Red in Round 3” means you plan to choose “wait” in Round 1 and Round
2 and choose “I’m Red” in Round 3.

◦ “I’m Red in Round 4” means you plan to choose “wait” in Round 1 to Round
3 and choose “I’m Red” in Round 4.

◦ “I’m Red in Round 5” means you plan to choose “wait” in Round 1 to Round
4 and choose “I’m Red” in Round 5.

◦ “Always wait” means you plan to choose “wait” in Round 1 to Round 5.

• In each match, you will be asked to choose your plan in the following screen.

• Therefore, your payoffs are summarized as below.

You choose “I’m Red” no later

than the other participant

You choose “I’m Red” later

or choose “always wait”

Terminal Round Your color Red White Red or White

1 p1 −w1 0

2 p2 −w2 0

3 p3 −w3 0

4 p4 −w4 0

5 p5 −w5 0
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4. At the end of each match, there will be a summary of the match which includes both
of your colors, the terminal round, your action, and your own payoff for this match. If you
choose “I’m Red” later or at the same round as the other participant, you will be informed
the other participant’s exact plan. Otherwise, you will be told that the other participant is
“later than you.”

5. At the beginning of the experiment, you will start from 900 points. You will get paid in
cash based on your total points earned from the 12 matches. If your total point is negative,
you will only receive the show-up fee.

6. Important:

a. After each match, you will be randomly paired with another participant in the next
match.

b. Your color and the other participant’s color will also be randomly re-drawn in each
match. The colors in each match are independent of the colors in other matches.

c. The probability distribution of colors and the payoff table will change in each match.

Please raise your hand if you have any questions. The question will be answered so that
everyone can hear.

F.3 Screenshots

Figures A.4 and A.5 show the actual screenshots of the sequential treatment, and Figures A.6
to A.8 display the actual screenshots of the simultaneous treatment. Notice that Figure A.7
represents the feedback screen of a player who selects “I’m Red” earlier than the opponent,
and Figure A.8 provides the perspective from the other player.
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Figure A.4: The decision stage of the sequential treatment

Figure A.5: The feedback stage of the sequential treatment

98



Figure A.6: The decision stage of the simultaneous treatment

Figure A.7: The feedback stage of the simultaneous treatment
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Figure A.8: The feedback stage of the simultaneous treatment
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