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Abstract

We develop an analytically-tractable model featuring a disaggregated production

economy, with a fully general input-output structure and optimal pricing decisions

subject to menu costs. Our framework delivers a novel closed-form aggregation result,

which links first-order changes in macroeconomic variables, such as GDP, employ-

ment and measured TFP, to microeconomic shocks, the input-output topology and the

sector-specific pricing moments. Crucially, we show that relative to the flexible-price

efficient benchmark, input-output linkages amplify the productivity and welfare losses

associated with menu costs by an order given by a novel centrality measure, which

captures a sector’s importance as a supplier of important suppliers. This generates a

powerful amplification of productivity and welfare losses, since input-linkages create

two rounds of misallocation: first, within sectors due to the effect on the location ad-

justment bands; second, across sectors due to the inefficient reallocation of resources

towards the key supplier sectors.
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1 Introduction

In modern economies, the production process of goods and services is organized in complex

networks of firms. These supply chains serve both as a conduit and amplifier of productiv-

ity shocks through the economy. Whether changes in productivity are passed on to other

producers and, eventually, households fundamentally depends on the ability of firms to reset

their prices. In the presence of even small price adjustment costs, some firms may elect

not to reset their prices, thereby operating with zero passthrough of productivity shocks.

Previous literature has highlighted that when resetting costs are small, the distortions they

induce are relatively limited thanks to strong selection effects.

In this paper, we study the role of production networks in shaping the distortions gen-

erated by the presence of menu costs. We build a tractable model in which firms operate in

a general Input-Output structure. Each sector is subject to common productivity shocks,

and individual firms are also hit by idiosyncratic fluctuations. The key friction in our model

is that firms have to set their price before the uncertainty on their productivity unravels.

Firms can reset their price optimally upon paying a small menu cost.

In the context of this economy, we provide three sets of results. First, we provide a

new, analytical aggregation result mapping easily quantifiable objects such as the variance

of idiosyncratic shocks, the fraction of adjusting firms, and the Input-Output structure to

changes in the labor share, TFP, GDP, and welfare. This result allows us to solve the model

analytically only as a function of sectoral variables. We provide closed-form solutions for the

non-stochastic steady state and simple analytical formulas for the full non-linear model. To

a first order, GDP in our economy behaves exactly like in a flexible price world. However,

the presence of pricing frictions generates misallocation. As a consequence, TFP is lower

and hours worked are higher than in a frictionless economy.

Second, we show that the welfare costs of sectoral fluctuations are governed by a new suf-

ficient statistic, which we label supplier-of-supplier centrality. This statistic can be computed

in any Input-Output data as S = ΨTΛ, where ΨT is the transpose of the Leontief Inverse

and Λ is a vector of Domar weights. Our sufficient statistic fully pins down the first-order

response of the labor share, TFP, GDP, and welfare to sectoral productivity shocks.

At the heart of our model is the idea that the presence of a production network fundamen-

tally alters the interactions between firms choosing whether to reset prices. As a firm’s price

constitutes a component of other firms’ marginal costs, the optimal choice to reset a price

significantly affects the likelihood that customers will also reset their price. This interaction

implies that a firm’s importance in the network is captured by its importance as a supplier
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to central firms. A natural implication of this new channel is that the pricing decisions of

individual firms have a significantly larger aggregate impact as they are transmitted and

amplified through the network.

The presence of menu costs generates cross-sectional misallocation due to the optimal

choice of some firms not to adjust their prices. Such misallocation and its movements, in

turn, affect the aggregate effects of sectoral shocks. We show that the aggregate impact

of sectoral productivity fluctuations depends on their effect on the aggregate labor share.

We can analytically decompose this into four distinct effects. First, menu costs imply that

there are pre-existing distortions (markups). As a consequence, Domar weights respond to

sectoral shocks and induce reallocation across industries. Second, as firms are subject to

productivity shocks, some firms may optimally choose to hire workers to pay the menu cost.

Third, as firms’ productivity changes, so does the price of adjusters. This effect propagates

through the network. Fourth, as productivity changes, firms adjust the re-pricing decision

by changing their inaction region. Importantly, this happens for all firms in the economy,

as long as they are connected to the shocked sector through the network. These different

effects are summarized by our new sufficient statistic. The supplier-of-supplier centrality is

as fat-tailed as the Domar weight distribution but is approximately one order of magnitude

larger.

Third, we show that, due to the supplier-of-suppliers centrality, the welfare cost of the

pricing friction is an order of magnitude larger than in the absence of the network. We

use the BEA I-O table, matched with sectoral price adjustment frequency, as inputs to pin

down the production network and the magnitude of idiosyncratic shocks. We show that

the presence of menu costs and the production network significantly alters the aggregate

effects of sectoral shocks. Quantitatively, we find that the menu cost effect can be as large

as 30% of the direct effect governed by the Domar weight. The bulk of this effect is a direct

consequence of the presence of the production network.

The rest of the paper is structured is follows. Section 2 introduces the problem solved

by each type of agent, and characterizes the equilibrium. Section 3 specifies the functional

forms and solves for the baseline economy with no sectoral or aggregate shocks. Section 4

derives the first-order behaviour of sectoral variables near the baseline. Section 5 performs

analytic aggregation, thus obtaining the first order behavior of macroeconomic variables.

Section 6 presents calibration of the model as well as the key quantitative results. Section 7

concludes.
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2 Model

2.1 Overview

The economy has three types of agents: households, firms, and the government. There is

a continuum of identical households who consume and supply labor. Each firm operates in

one and only one of N sectors; each sector i ∈ [1, ..., N ] is populated by a continuum [0, 1]

of monopolistically competitive firms, where we let Φi denote the set of all firms in sector

i. There is a constant elasticity of substitution across within-sector varieties, denoted by

ϵ, ϵ ≥ 2. The government consists of a monetary authority, which sets the money supply

M , and a fiscal authority, which sets sector-specific sales taxes and rebates the revenue to

households in a lump-sum fashion.

The setting is static in the following sense: at the beginning of the period, households

and firms anticipate both idiosyncratic and aggregate shocks (monetary and productivity)

to be at their unconditional mean values of one. Then, they discover the realized values of

all shocks and adjust their behaviour should the realizations differ from the unconditional

means.

2.2 Households

The representative household chooses consumption C and labor supply L to maximize utility:

max
C,L

U(C,L) (1)

subject to the budget constraint:

PCC ≤ WL+
∑
i

∫ 1

0

Πi(j)dj − T (2)

where PC is the consumption price index (to be defined later), W is the nominal wage, Πi(j)

is the profits of firm j in sector i, and T is a lump-sum tax levied by the government.

Consumption C is, in turn, an aggregator over consumption of sector-specific varieties:

C = C(C1, ..., CN) (3)

where C(·) is homogenous of degree one and non-decreasing in each of the arguments. The

household chooses consumption of each of the sector-specific varieties to minimise total
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expenditure
∑

i PiCi, subject to the aggregator in (3). The solution to this problem pins

down the consumption price index PC as the minimal cost of a basket that aggregates to

C = 1: PC = PC(P1, ..., PN), where PC is homogenous of degree one and non-decreasing in

each of the arguments.

Each sector-specific consumption is itself an aggregator over consumptions of varieties

bought from the firms in that sector:

Ci =

(∫ 1

0

Ci(j)
ϵ−1
ϵ dj

) ϵ
ϵ−1

. (4)

The household chooses consumption of each of the firm-specific varieties to minimise total

expenditure
∫ 1

0
Pi(j)Ci(j)dj, subject to the aggregator in (4). The latter pins down the

demand for each firm-level variety:

Ci(j) =

(
Pi(j)

Pi

)−ϵ

Ci. (5)

For the rest of the main text of the paper, we we work with log-linear utility over con-

sumption and labor supply:

Assumption 1 (Golosov-Lucas preferences). The utility function over consumption and

labor supply is log-linear: U(C,L) = logC − L.

Such a utility function implies the following equilibrium relationship between consump-

tion and labor supply:

PCC = W. (6)

2.3 Firms

A firm j in sector i has access to the following production technology:

Yi(j) = Zi(j)Fi [Li(j), Xi1(j), ..., XiN(j)] (7)

where Fi(·) is homogenous of degree one and non-decreasing in inputs; Li(j) is labor input,

Xik(j) is intermediate inputs bought by firm j in sector i from sector k, Zi(j) is firm-level

productivity, which is decomposed into idiosyncratic and sectoral components according to:

Zi(j) ≡ ζi(j)
1

ϵ−1 × Ai (8)
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Idiosyncratic productivities have a mean one and are independent across and within sectors;

sectoral productivities have a mean one and are independent across sectors.

2.3.1 Firms: cost minimization

Each firm chooses its labor and intermediate inputs to minimize the total variable cost of

production WLi(j)+
∑

k PkXik(j) subject to the production technology in (7). The solution

to this cost minimization problem pins down the firm-level marginal cost of production,

which in equilibrium can be written as:

MCi(j) = ζi(j)
1

1−ϵ ×Qi(W,P1, ..., PN ;Ai) (9)

where Qi(·) is the marginal cost index, common for all firms within a sector, strictly falls in

Ai and is homogenous of degree one and non-decreasing in the prices of all inputs.

2.3.2 Firms: pricing

Price setting is subject to nominal rigidities in the form of a fixed menu cost. In particular, if

a firm in sector i wants to set a price different from a pre-determined price of Pi,0 it needs to

purchase υi additional units of labor. Formally, profits of a firm j in sector i can be written

as:

Πi(j) = (1− τi)Pi(j)Yi(j)−MCi(j)Yi(j)−Wυiχi(j) (10)

where

χi(j) =

1 if Pi(j) ̸= Pi,0

0 if Pi(j) = Pi,0

(11)

and (1− τi) is a sales tax levied by the government.

Conditional on choosing to adjust the price, the optimal reset price Pi(j)
∗ maximises

profits in (10) subject to the downward sloping demand curve Yi(j) = (Pi(j)
∗/Pi)

−ϵYi. It

can be shown that:

Pi(j)
∗ =

1

1− τi

ϵ

ϵ− 1
MCi(j) (12)

As is standard in the New Keynesian literature, we set 1− τi =
ϵ

ϵ−1
, ∀i to make the optimal

reset price competitive, thus removing the non-state contingent distortion associated with

the presence of market power.
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The loss function associated with the price adjustment decision is given by:

L [ζi(j)] = [Πi(j)|χi(j) = 1]− [Πi(j)|χi(j) = 0] . (13)

Therefore, firm j in sector i should adjust prices if and only if:

L [ζi(j)] ≥ 0. (14)

The condition in (14) pins down the adjustment bands (ζLi , ζ
H
i ) for a firm in sector i in terms

of aggregate variables, such that the firm adjusts iff ζi(j) > ζHi or ζi(j) < ζLi .

Unfortunately, apart from the special case when ϵ = 2, one cannot characterize the

adjustment bands analytically. For the purpose of analytic tractability, we assume that the

price adjustment decision is based on an approximate loss function L̂, given by a second-order

approximation of L(ζi(j)) in ζi(j) around its unconditional mean of 1:

L̂ [ζi(j)] ≡ L [1] + L′ [1] (ζi(j)− 1) +
1

2
L′′ [1] (ζi(j)− 1)2. (15)

The approximate loss function delivers the following closed-form expressions for the ad-

justment bands (ζLi , ζ
H
i ), in terms of sectoral and aggregate variables:

Lemma 1 (Adjustment bands). Under the approximate loss function L̂, the adjustment

bands are:

ζLi = 1 + Γi
1 −

[
(2 + Γi

1)Γ
i
1 + Γi

2

] 1
2 , (16)

ζHi = 1 + Γi
1 +

[
(2 + Γi

1)Γ
i
1 + Γi

2

] 1
2 , (17)

where Γi
1 and Γi

2 are given by:

Γi
1 ≡

ϵ− 1

ϵ
(1−Q−ϵ

i ), Γi
2 ≡ 2

ϵ− 1

Qi

[
ϵ− 1

ϵ

Wυi
P ϵ
i Yi

+ 1−Qi

]
. (18)

The equilibrium adjustment bands depend on two components. The first one, namely

Γi
1, fully pins down the location of the midpoint of the adjustment bands, or

ζLi +ζHi
2

= 1+Γi
1.

Whenever there is a decrease in the sectoral marginal cost Qi, there is a corresponding fall

in Γi
1, which shifts the midpoint of adjustment bands to the left. Equivalently, the mass of

non-adjusters shifts towards firms with lower idiosyncratic productivity. A fall in Γi
1 also
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lowers the width of adjustment bands, or
ζHi −ζLi

bi
, which is also the fraction of firms within a

sector that choose not to adjust their price.

At the same time, the width of adjustment bands also depends on the second component

Γi
2. In particular, a fall in Γi

2, for example, due to a rise in sector size Yi or a reduction in

the menu cost υi, lowers the width of the bands, or equivalently increases the equilibrium

fraction of adjusting firms.

The sectoral price index Pi is obtained by aggregating firm-level prices:

P 1−ϵ
i =

∫ 1

0

Pi(j)
1−ϵdj

=

∫
ζ<ζLi

Pi(j)
1−ϵdj +

∫
ζLi ≤ζ≤ζHi

Pi(j)
1−ϵdj +

∫
ζ>ζHi

Pi(j)
1−ϵdj (19)

Firms which chose to adjust the price set it to Pi(j)
∗ = ζi(j)

1
1−ϵQi, whereas the non-adjusters

set it at the exogneous Pi,0. We assign Pi,0 = 1, ∀i, as the common price in a symmetric

non-stochastic steady-state with flexible prices. The price index is given by

P 1−ϵ
i = Q1−ϵ

i

[∫
ζ<ζLi

ζi(j)dj +

∫
ζ>ζHi

ζi(j)dj

]
+ Pr(ζLi ≤ ζ ≤ ζHi ). (20)

Analytically solving for the integrals in the brackets and for the probability of being between

the adjustment thresholds requires specifying the distribution from which the idiosyncratic

shocks are drawn. For the rest of the main text, we assume they are drawn from a continuous

uniform distribution:

Assumption 2 (Idiosyncratic shocks). Idiosyncratic shocks to productivity of firms in sector

i are drawn from a continuous uniform distribution with support [1 − bi
2
, 1 + bi

2
], 0 < bi <

2,∀i.

With the additional assumption above, we obtain the final expression for the sectoral

price index in terms of the sectoral marginal cost Qi and the adjustment bands (ζLi , ζ
H
i ):

P 1−ϵ
i = Q1−ϵ

i

1− ζHi − ζLi
bi

× ζLi + ζHi
2︸ ︷︷ ︸

Midpoint

+
ζHi − ζLi

bi︸ ︷︷ ︸
Width

(21)

The expression above shows that the sectoral price index depends on three components.
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First, it rises in the sectoral marginal cost Qi. Naturally, as Qi rises, the optimal reset

price rises for every firm, which, ceteris paribus, increases the overall sectoral price index.

Second, Pi depends on the width of adjustment bands
ζHi −ζLi

bi
, which is also the fraction of

non-adjusting firms in the sector. As the fraction of non-adjusters rises, the sectoral price

index gets closer to the non-adjustment price Pi,0 = 1; as the fraction falls, the sectoral price

gets closer to Qi. Finally, the sectoral price rises in the midpoint of the bands
ζLi +ζHi

2
. All

else equal, a rise in the midpoint implies that the mass of non-adjusters shifts towards firms

with larger idiosyncratic productivity. The latter simultaneously implies that the mass of

adjusters now has a lower average productivity, which increases the overall sectoral price

index.

2.4 Government policy

The government consists of a monetary authority which sets the money supplyM , and a fiscal

authority which sets sectoral sales taxes {τi}Ni=1 and reimburses the revenue to households

as a lump-sum transfer T .

We introduce money into the model through a cash-in-advance constraint on final nominal

demand:

PCC ≤ M. (22)

Combined with the equilibrium relationship between consumption and labor supply in (6),

it follows that in equilibrium, the nominal wage equals money supply: W = M .

As the fiscal authority sets τi = 1 − ϵ
ϵ−1

, it needs to collect the following lump-sum tax

from the household in order to balance the fiscal budget:

T =
∑
i

∫ 1

0

1

ϵ− 1
Pi(j)Yi(j)dj. (23)

2.5 Market clearing and equilibrium

In addition to the optimality conditions and policy specifications above, equilibrium in our

economy is pinned down by market clearing conditions in the labor market:

L =
∑
i

∫ 1

0

Li(j)dj +
∑
i

(
1− ζHi − ζLi

bi

)
υi (24)
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and in the market for each individual good:

Yi(j) = Ci(j) +
∑
k

∫ 1

0

Xki(j
′, j)dj′, ∀i, ∀j ∈ Φi. (25)

We can now define an equilibrium in our economy:

Definition 1 (Equilibrium). The equilibrium is a collection of prices {Pi(j)|j ∈ Φi}Ni=1, allo-

cations
{
Yi(j), Li(j), Ci(j), {Xir(j, j

′)|j′ ∈ Φr}Nr=1 |j ∈ Φi

}N

i=1
and wage W , which given the

realizations of firm-level productivities {ζi(j)|j ∈ Φi}Ni=1, sectoral productivities {Ai}Ni=1 and

money supply M satisfy agent optimization and market clearing conditions.

2.6 Misallocation in equilibrium

In equilibrium, agents are making decisions that are privately optimal. However, given the

distortions introduced by nominal rigidities in the form of menu costs, as well as firms’

market power, resources will, in general, be misallocated. In this subsection, we derive the

relevant measure of misallocation within each sector and show how input-output linkages

create across-sector propagation of misallocation.

For convenience, let λi ≡ PiYi

PCC
be the (revenue-based) Domar weight (sales share) of sector

i. The goods market clearing condition (25) can be used to find a convenient expression for

sectoral Domar weights {λi}Ni=1. Aggregating across firms and multiplying both sides by the

sectoral price:

PiYi = PiCi +
∑
k

∫ 1

0

PiXki(j
′)dj′ (26)

Dividing through by the final nominal demand PCC:

PiYi

PCC︸ ︷︷ ︸
≡λi

=
PiCi

PCC︸ ︷︷ ︸
≡ωc

i

+
∑
k

∫ 1

0

PiXki(j
′)

MCk(j′)Yk(j′)︸ ︷︷ ︸
≡ωki

MCk(j
′)Yk(j

′)

PCC
dj′ (27)

Defining consumption shares as ωc
i ≡ PiCi

PCC
and input-output cost shares as ωki ≡ PiXki(j

′)
MCk(j′)Yk(j′)

,

and further noting that MCk(j
′)Yk(j

′)
PCC

= MCk(j
′)Yk(j

′)
PkYk

PkYk

PCC
= MCk(j

′)
Pk(j′)

Pk(j
′)Yk(j

′)
PkYk

λk =
1

µk(j′)
Pk(j

′)Yk(j
′)

PkYk
λk,

where µk(j
′) ≡ Pk(j

′)
MCk(j′)

is the firm-level markup, it follows that:

λi = ωc
i +

∑
k

ωkiλkµ
−1
k (28)
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where

µk ≡
(∫ 1

0

1

µk(j)

Pk(j)Yk(j)

PkYk

dj

)−1

(29)

is the sectoral sales-weighted harmonic average of firm-level markups. The final step is to

perform the analytic aggregation above. Using the downward sloping demand condition

Yi(j) = (Pi(j)/Pi)
−ϵYi it can be shown that:

µ−1
k =

∫ 1

0
1

µk(j)
Pk(j)

1−ϵdj

P 1−ϵ
k

. (30)

The sales-weighted harmonic average µi is the relevant measure of within-sector misallocation

in sector i of our economy. In the special case where all firms charge competitive prices

(µi(j) = 1), our measure of misallocation collapses to the value of one. More generally, the

adjusters charge the optimal reset price in (12), implying [µi(j)|χi(j) = 1] = 1. The non-

adjusters, on the other hand, charge the common price of one, implying that [µi(j)|χi(j) =

0] = ζi(j)
1

ϵ−1Q−1
i . We can write the expression for within-sector misallocation as:

µ−1
i =


∫
ζi(j)≤ζLi

ζi(j)dj +

∫
ζi(j)≥ζHi

ζi(j)dj︸ ︷︷ ︸
Adjusters

+

Non-adjusters︷ ︸︸ ︷∫
ζLi <ζi(j)<ζHi

ζi(j)
1

1−ϵQϵ
idj


(
Pi

Qi

)ϵ−1

. (31)

Finally, using the assumption of uniform distribution of idiosyncratic shocks, we can express

µ−1
i in terms of sectoral variables only:

µ−1
i = 1 + P ϵ−1

i

[
Qi

(ζHi )
2−ϵ
1−ϵ − (ζLi )

2−ϵ
1−ϵ

bi
(
2−ϵ
1−ϵ

) − ζHi − ζLi
bi

]
. (32)

Figure 1 provides a graphical representation of the link between adjustment decisions and

within-sector misallocation. In particular, it plots the integrand in (29), or the sales-adjusted

inverse markup, against the firm-level idiosyncratic productivity ζi(j). For adjusting firms,

the integrand linearly rises in ζi(j), reflecting the fact that their within-sector sales share

rises in idiosyncratic productivity. On the other hand, for the non-adjusters, the integrand

falls in ζi(j), representing the inefficient markups they charge. The area under the three

segments in the figure represents within-sector misallocation.

The condition in (28) further establishes the link between misallocation within a specific

sector and its propagation to the rest of the economy through input-output linkages. If a
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Figure 1: Within-sector misallocation

Notes: the figure provides a graphical representation of the sectoral sales-weighted harmonic average markup,
which represents within-sector misallocation.

sector i’s customer sectors have a lot of misallocation (corresponding to high values of µ−1
k ),

then i′s sales share becomes inefficiently high. This reflects the need to supply additional

resources to the customer sectors to compensate for their suboptimal allocation of resources

across firms. Naturally, once the sector becomes inefficiently large, this makes their suppliers

inefficiently large as well. This upstream propagation of misallocation can be summarized

by writing the equilibrium sales share in vector form:

λ = (I − Ω̂T )−1ωC (33)

where λ = [λ1, ..., λN ]
T ,ωC = [ωC

1 , ..., ω
C
N ]

T and [Ω̂]i,j ≡ ωijµ
−1
i . The Leontief inverse (I −

Ω̂T )−1 succinctly captures the fact that misallocation in any sector propagates upstream to

its suppliers, suppliers of its supplier, and so on.
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3 Functional forms and baseline equilibrium

3.1 Functional forms

We proceed under the assumption the consumption aggregator C(·) and the production

technology Fi(·), ∀i, take the Cobb-Douglas form:

Assumption 3 (Cobb-Douglas aggregation across sectors). The consumption aggregator

C(·) is given by:

C(C1, ..., CN) = ιC
N∏
i=1

C
ωC
i

i , (34)

where ιC ≡
∏N

i=1 ω
C
i
−ωC

i is a normalization term and
∑

i ω
c
i = 1, ωc

i ≥ 0,∀i. Similarly, the

production technology Fi(·) for a firm j in sector i is given by:

Fi[Li(j), Xi1(j), ..., XiN(j)] = ιiLi(j)
ηi

N∏
k=1

Xik(j)
ωik , (35)

where ιi ≡ η
−ηi
i

∏
ω−ωik
ik is a normalization term and ηi +

∑
i ωik = 1, ηi, ωik ≥ 0,∀i.

Under such an assumption regarding sectoral aggregation, the consumption price index

and sectoral marginal cost take the following form in equilibrium:

PC =
N∏
i=1

P ωC

i , Qi =
1

Ai

W ηi

N∏
k=1

P ωik
k , ∀i. (36)

Moreover, the equilibrium final consumption shares ωC
i ≡ PiCi

PCC
= ωC

i and input-output cost

shares as ωij ≡ PjXij(j)

MCi(j)Yi(j)
= ωij are all constant.

3.2 Baseline: only firm-level idiosyncratic shocks

Here we characterize the equilibrium of our baseline economy, which is driven exclusively

by idiosyncratic productivity shocks. In particular, we evaluate equilibrium setting M =

Ai = 1,∀i, so that all productivity shocks are at their unconditional means. Let endogenous

variables with bars (e.g. x) denote equilibrium outcomes in such a baseline economy.

Consider the sectoral price condition (21) in our baseline economy:

P
1−ϵ

i = Q1−ϵ

i

(
1− ζ

H

i − ζ
L

i

bi
×
{
1 +

ϵ

ϵ− 1
(1−Q−ϵ

i )

})
+

ζ
H

i − ζ
L

i

bi
(37)
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Given that Qi =
1
Ai
M

ηi∏N
k=1 P

ωik

k =
∏N

k=1 P
ωik

k , it is easy to verify that

P i = Qi = 1,∀i (38)

is consistent with equilibrium in our baseline economy. Further, it follows that P
C

= 1

and from the cash-in-advance constraint we get C = 1. This means both aggregate and

sectoral prices and consumptions in the baseline equilibrium admit the same values as in the

equilibrium where both idiosyncratic and aggregate shocks are at their unconditional means

of one. In other words, when it comes to the effect on consumption and prices, idiosyncratic

shocks exactly ”wash out”.

Further, we can also find an expression for adjustment thresholds in the baseline economy.

To do that, define

ρi ≡
Wυi

P iY i

(39)

to be the normalized menu cost, given by the ratio of menu cost payment to sectoral revenue

in baseline equilibrium. Then, the adjustment bands in our baseline equilibrium are given

by:

ζ
L

i = 1− ε
√
ρi, ζ

H

i = 1 + ε
√
ρi. (40)

where ε ≡
√

2 (ϵ−1)2

ϵ
. Notice that the bands are proportional to the square root of the

normalized menu cost. Therefore, even if the normalized menu cost is second-order, the

bands are first-order.

Finally, the within-sector misallocation, given by the sectoral sales-weighted harmonic av-

erage markup, in the baseline equilibrium can be computed as µ−1
i = 1+

[
(ζ

H
i )

2−ϵ
1−ϵ−(ζ

L
i )

2−ϵ
1−ϵ

bi( 2−ϵ
1−ϵ)

− ζ
H
i −ζ

L
i

bj

]
.

The latter in turn gives the baseline sales shares as λ = (I−Ω̂
T

)−1ωC , where [Ω̂]i,j ≡ ωijµ
−1
i .

Note that in the baseline equilibrium the sectoral Domar weights are equal to the sectoral

output: λi =
P iY i

P
C
C
= Y i,∀i.

4 First-order sectoral behaviour

4.1 Sectoral pricing

We start by deriving the equilibrium first-order movements in sectoral prices, around the

baseline equilibrium characterized in the previous section. Denote by αi ≡ ζ
H
i −ζ

L
i

bi
the baseline
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sector-specific frequency of non-adjustment. Then a first-order change in the price index of

sector i can be written as:

d logPi =
(1− αi)

αi

d log
Qi

Pi︸ ︷︷ ︸
∆ Real MC

+
1

ϵ− 1
d

[
ζLi + ζHi

2

]
︸ ︷︷ ︸

Selection effect

. (41)

One can see that the sectoral price change has two components. The first component is the

change in the sectoral real marginal cost, scaled by the ratio of fractions of adjusters and

non-adjusters. This component is exactly equivalent to the total sectoral price change in

the case of purely time-dependent pricing (Calvo, 1983). The second component is unique

to our state-dependent pricing setup and comes from the change in the location of the

midpoint of adjustment bands. The latter represents a change in the identity of adjusters

within a sector following a sectoral/aggregate shock, or the selection effect. If the average

idiosyncratic productivity of adjusters rises following a shock, then the sectoral price index

gets an additional downward push, and vice versa.

Understanding the selection effect requires deriving the equilibrium movements in ad-

justment bands following a shock. Below we formally characterize the first-order changes in

ζLi and ζHi near the baseline:

Proposition 1 (Adjustment bands). Near the baseline, the first-order movements in upper

and lower adjustment bands of sector i are given by:

dζHi = ϕH
i (ϵ− 1)d logQi −

(ϵ− 1)2√
2ϵ

√
ρid logPi −

ϵ− 1√
2ϵ

√
ρid log λi

and

dζLi = ϕL
i (ϵ− 1)d logQi +

(ϵ− 1)2√
2ϵ

√
ρid logPi +

ϵ− 1√
2ϵ

√
ρid log λi,

where

ϕH
i ≡

(
1− 1√

2ϵ

√
ρi

)
, ϕL

i ≡
(
1 +

1√
2ϵ

√
ρi

)
.

Having formally solved for the equilibrium changes in adjustment bands, we can imme-

diately deduce the equilibrium movements in their midpoint:

d

[
ζLi + ζLi

2

]
= (ϵ− 1)d logQi. (42)

Following an increase in the sectoral marginal cost, the midpoint shifts to the right and vice
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versa. The intuition behind the results is as follows. Following an increase in Qi, there is

a corresponding one-for-one increase in the optimal reset price of every firm in the sector.

The latter pushes the distance between the non-adjustment price (Pi,0 = 1) and the optimal

reset price to the negative territory. On the margin, this creates an incentive for firms whose

idiosyncratic productivity is just to the left of baseline bands to adjust; simultaneously, this

creates an incentive for firms just to the right of the baseline bands to stop adjusting. As a

result, the mass of non-adjusters moves towards firms with higher idiosyncratic productivity,

corresponding to a rightward shift in the midpoint of the bands.

We can now combine (41) and (42) to express first order movements in terms of sectoral

shocks and monetary policy response:

Proposition 2 (Sectoral prices). Near the baseline equilibrium, the first-order change in the

sectoral price is given by:

d logPi = d logQi = −
∑
k

Ψikd logAk + d logM (43)

where Ψik is the (i, k) entry of the cost-based Leontief inverse:

Ψ ≡ (I − Ω)−1 (44)

where [Ω]i,j = ωij.

Proposition 2 estbalishes a key result. Up to first order, sectoral prices move one-for-one

with the sectoral marginal cost, just as they would in the flexible-price equilibrium. This

first-order sectoral price flexibility property holds even though the width of the adjustment

bands does not shrink to zero following sectoral/aggregate shocks, so that there is still a

non-zero mass of firms that choose to not adjust. Key here is the selection effect, which

changes the composition of adjusters in a non-random way. In particular, following a shock

which increases the sectoral marginal cost, the mass of adjusters shifts towards firms with

lower idiosyncratic productivity, which delivers a further upward push to the sectoral price.

In fact, the push is just strong enough to make the sectoral price move one-for-one with the

sectoral marginal cost.

Crucially, even though sectoral prices behave like in the flexible-price equilibrium up to

first order, other important aspects of the economy behave very differently in the frictionless

environment. In the next subsection, we show that when it comes to misallocation, the

model features a first-order deviation from the flexible-price benchmark.
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Figure 2: First-order changes in within-sector misallocation

(a) Price effect (b) Bands effect

Notes: the figure graphically illustrates the two effects that drive first-order changes in the sectoral sales-
weighted harmonic average markup.

4.2 Sectoral misallocation

In this subsection, we characterize first-order changes in sectoral sales-weighted harmonic

average markups, corresponding to changes in misallocation within a specific sector. In the

next section, we use these results to derive changes in aggregate misallocation.

The proposition below formally derives the first-order change in within-sector misalloca-

tion near the baseline:

Proposition 3 (Within misallocation). Near the baseline, the first-order change in the in-

verse harmonic average markup of any sector i is given by:

dµ−1
i =

φP
i

bi
d logPi︸ ︷︷ ︸

Price effect

−
[
φH
i

bi
dζHi +

φL
i

bi
dζLi

]
︸ ︷︷ ︸

Bands effect

where φP
i , φ

H
i and φL

i are given by:

φP
i ≡ ϵ(µ−1

i − 1)bi + ζ
H

i − ζ
L

i > 0, φH
i ≡ 1− (ζ

H

i )
1

1−ϵ > 0, φL
i ≡ (ζ

L

i )
1

1−ϵ − 1 > 0.

One can see that first-order changes in within-sector misallocation can be decomposed

into the price effect and the bands effect.
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The price effect signifies that, ceteris paribus, a first-order fall in the sectoral price leads

to first-order fall in that sector’s misallocation. Recall that firms that choose not to adjust

their price charge an inefficient markup of [µi(j)|χi(j) = 0] = ζi(j)
1

ϵ−1Q−1
i . By Proposition

2, a first order fall in Pi delivers a one-for-one first-order fall in Qi. As a result, markups of

all non-adjusting firms rise, which lowers the resources allocated to the non-adjusting firms

and hence the misallocation within sector i. Panel (a) of Figure 2 makes the same point

graphically: a fall in Q shifts the intermediate segment of the misallocation curve downward,

lowering the total area under the three segments.

The bands effect, on the other hand, states that, ceteris paribus, a first order decrease in

the adjustment bands ζLi and ζHi leads to an increase in misallocation in sector i. A leftward

shift in the bands implies that the mass of non-adjusters shifts towards firms with lower

idiosyncratic productivity. Therefore, the new marginal non-adjusters have lower markups,

which increases the resources allocated to them and, hence, the misallocation within the

sector. Panel (b) of Figure 2 makes the same point graphically.

Note that by Propositions 1 and 2, shocks that lead to a fall in Qi simultaneously lead to

a fall in the sectoral price and a leftward shift in the sectoral adjustment bands. Therefore,

the cyclical behaviour of within-sector misallocation near the baseline can be ambiguous. In

the next section, we show that the ambiguity is resolved in the limit of small menu costs.

However, before that, we characterize the cyclical behaviour of macroeconomic aggregates

near the baseline.

5 Aggregation

5.1 Aggregate GDP

First, we characterize the first-order behaviour of aggregate GDP:

Proposition 4 (Aggregate GDP). Near the baseline, the first-order change in aggregate

GDP is given by:

d logC =
∑
k

λ̃kd logAk

where λ̃k is the sales share (Domar weight) in flexible-price equilibrium:

λ̃ = (I − Ω
T
)−1ωC = ΨTωC .

Up to the first order, aggregate GDP behaves as in the flexible-price model. In particular,
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sector-specific productivity shocks are aggregated with the flexible-price (cost-based) Domar

weights, consistent with the classical result of Hulten (1978). At the same time, changes in

money supply have no first-order effect on aggregate GDP. The last result is reminiscent of

the quasi-neutrality of Golosov and Lucas Jr (2007).

As a direct consequence of this result, we have that regardless of the underlying monetary

rule, there is no ”output gap” up to first order. Nonetheless, despite the approximate

neutrality of aggregate GDP, the economy features misallocation as the presence of menu

costs induces some firms to be too large and others to be too small. This cross-sectional

inefficiency manifests in an inefficient aggregate labor supply.

5.2 Aggregate Employment and Labor Share

We now turn to studying the aggregate supply side of the economy. In particular, we derive

first-order movements in aggregate labor supply.

Note that under the log-linear preferences we use, the equilibrium aggregate labor supply

is exactly equal to the equilibrium labor share. In particular, letting Θ ≡ WL
PCC

be the

aggregate share of value added, the households’ optimality condition PCC = W implies that

in equilibrium Θ = L. We are, therefore, going to be using Θ and L interchangeably.

From the households’ budget constraint, we can write the equilibrium aggregate labor

supply/labor share as:

L = Θ = 1 +
∑
i

λi(µ
−1
i − 1)︸ ︷︷ ︸

Misallocation

+
∑
i

υi

(
1− ζHi − ζLi

bi

)
︸ ︷︷ ︸

Menu cost payment

. (45)

As a special case, the flexible-price economy with (υi = 0 and µ−1
i = 1) features an

aggregate labor share equal to one. Price rigidities in the form of menu costs create addi-

tional (inefficient) labor supply in equilibrium. First, due to the fact that menu costs are

paid with labor. Second, additional labor supply is needed to compensate for within-sector

misallocation, which further propagates through input-output linkages as governed by the

Domar weights λi.

We can now use (45) to derive the first-order change in aggregate employment and the
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labor share:

dL = dΘ =
∑
i

dλi(µ
−1 − 1)︸ ︷︷ ︸

1○:pre-existing distortions

−
∑
i

υid

[
ζHi − ζLi

bi

]
︸ ︷︷ ︸
2○: menu cost payment

+
∑
i

λi
φP
i

bi
d logPi︸ ︷︷ ︸

3○: aggregate price effect

−
∑
i

λi

[
φH
i

bi
dζHi +

φL
i

bi
dζLi

]
︸ ︷︷ ︸

4○: aggregate bands effect

. (46)

Let us now analyze the four effects that pin down the first-order changes in aggregate em-

ployment (labor share). First, there is the effect of pre-existing distortions : all else equal, if

sectoral/aggregate shocks make a sector i larger, the importance of pre-existing misalloca-

tion in sector i increases. As a consequence, additional labor needs to be supplied to make

up for misallocation within that sector. Second, there is the menu cost payment effect : if

sectoral/aggregate shocks increase the fraction of adjusters in a specific sector, then there

will be more aggregate labor required to pay the menu costs of adjusters. Third, there is the

aggregate price effect. Recall from Proposition 3 that a cyclical rise in the sectoral price in-

creases misallocation within that sector. The aggregate price effect scales each sector-specific

price effect by the sales share of that sector. This is because more labor is required to com-

pensate for the inefficient allocation of resources within a sector that is a major supplier

either to other sectors or to households. Fourth, there is the aggregate bands effect. Once

again, from Proposition 3, we know that a cyclical leftward shift in the adjustment bands

increases within-sector misallocation. For the same reason as with the aggregate price effect,

the aggregate bands effect scales each sector-specific bands effect by the sectoral sales share.

Note that, in general, for a given sectoral/aggregate shock, the four effects do not move

in the same direction, resulting in an ambiguous cyclicality of aggregate labor. In particular,

we know from Propositions 1 and 2 that productivity shocks that lead to a fall in sectoral

marginal costs lead to a reduction in all sectoral prices and leftward shifts in all sectoral

bands, implying that the aggregate price effect and the aggregate bands effect move in

opposite directions.

However, the ambiguity in aggregate labor cyclicality can be resolved in a specific setting

we now consider. First, suppose monetary policy amounts to stabilizing aggregate nominal

GDP at one (PCC = 1), implying that money supply is fixed up to first order (d logM = 0).

Second, consider perturbations of each of the four effects in the normalized menu costs
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{ρi}Ni=1. In particular, we assume the normalized costs to be small, in the sense that ρi is

second order and
√
ρi is first order in the perturbations. The next proposition establishes the

first-order response of each of the four components, as well as aggregate labor, in response

to a sectoral productivity shock, up to an error that is O (
∑

i ρ
2
i ):

Proposition 5 (Aggregate labor). Suppose that monetary policy amounts to fully stabiliz-

ing aggregate nominal demand (PCC = 1). Then the four components of the response of

aggregate labor supply (labor share) to a productivity shock in a sector k can be approximated

as:

1○:
∑

i
dλ

d logAk
(µ−1

i − 1) ≈ 0

2○: −
∑

i
λi

bi
ρid
[
ζHi −ζLi
d logAk

]
≈ −

∑
i

[
(ϵ−1)

√
2ϵ

bi
λ̃iΨik

]
ρ1.5i

3○:
∑

i λi
φP
i

bi

d logPi

d logAk
≈ −

∑
i

[
2ε
bi
λ̃iΨik

]
ρ0.5i −

∑
i

[
ϵ2ε3

3(ϵ−1)2bi
λ̃iΨik

]
ρ1.5i

4○: −
∑

i λi

[
φH
i

bi

dζHi
d logAk

+
φL
i

bi

dζLi
d logAk

]
≈
∑

i

[
2ε
bi
λ̃iΨik

]
ρ0.5i +

∑
i

[
ϵε2{(2ϵ−1)ε+3(ϵ−1)}

3(ϵ−1)2bi
λ̃iΨik

]
ρ1.5i

Combining them:

dL

d logAk

=
dΘ

d logAk

=
(9ϵ− 4)ε

6

∑
i

[
λ̃iΨik

bi

]
ρ1.5i +O

(∑
i

ρ2i

)
. (47)

Let us now analyze the key properties established above. First, the approximation allows

us to clearly assess the relative magnitudes and directions of the four effects driving first-

order changes in aggregate labor. The pre-existing distortions effect is the smallest one in

terms of magnitudes; in fact, it is zero up to O (
∑

i ρ
2
i ). The menu cost payment effect

lowers aggregate labor after any sector-specific positive productivity shock since the latter

decreases the fraction of adjusting firms in every sector. As for the aggregate price effect,

it similarly has a negative effect on aggregate labor after a positive productivity shock,

since the latter lowers sectoral prices, which in turn reduces misallocation in every sector,
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diminishing the need for extra labor to compensate for it. Moreover, the aggregate price

effect is two orders larger than the menu cost payment effect. Finally, the aggregate bands

effect is of the same order as the aggregate price effect, although it has a different direction

following a productivity shock. In particular, any sector-specific productivity improvement

shifts all sectoral adjustment bands leftwards, thus increasing within-sector misallocations

and, therefore, making the aggregate labor supply rise to compensate for the extra inefficient

allocation of resources across firms.

Second, the proposition above gives an unambiguous prediction regarding the direction

of the first-order change in aggregate labor following any productivity shock. Specifically,

following any sector-specific productivity improvement, the aggregate labor supply increases.

This is because the aggregate bands effect dominates over the combination of the aggregate

price effect and the menu cost payment effect. However, despite the fact that the aggregate

bands effect is O (
∑

i ρ
0.5
i ), the cyclical movements in the aggregate labor are only of the

order O (
∑

i ρ
1.5
i ). This is because the two components of the aggregate bands and price

effects that are O (
∑

i ρ
0.5
i ) exactly cancel out.

The first-order changes in aggregate labor can also be approximated in terms of sufficient

statistics observable in the data:

Corollary 1 (Sufficient Statistic). Suppose that monetary policy amounts to fully stabiliz-

ing aggregate nominal demand (PCC = 1). Denote by αi ≡ ζ
H
i −ζ

L
i

bi
the sector-specific

frequencies of non-adjustment, and by σ2
i ≡ V ar(ζi) the sector-specific variances of id-

iosyncratic shocks. Then the first-order change in the aggregate employment (labor share)

can be approximated as:

dL

d logAk

=
dΘ

d logAk

≈ ξ × Eλ̃[σ
2α3]× Sk + ξ × ℓ× Covλ̃[σ

2α3,Ψ(k)] (48)

where ξ ≡ (9ϵ−4)ϵ
8(ϵ−1)2

, ℓ ≡
∑

i λ̃i, σ2α3 ≡ [σ2
1α

3
1, ..., σ

2
Nα

3
N ]

T ,Ψ(k) is the k’th column of the

Leontief inverse and

S ≡ ΨT λ̃ = (ΨT )2ωc (49)

is the supplier-of-suppliers (SS) centrality.

Let us discuss the role played by each component in the sufficient statistic formula. First,

aggregate labor increases by more following a positive productivity shock to sectors that have

a high supplier-of-suppliers (SS) centrality, denoted by Sk. The novel SS-centrality vector is

given by the product of the square of the (transpose) of the Leontief inverse and the vector
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of final consumption shares. Intuitively, a sector has a high SS-centrality if it acts as a

major supplier to sectors (represented by the first ΨT ) that in turn act as a major supplier

either to other sectors (represented by the second ΨT ), or to households (represented by

the final consumption share vector ωc). Second, productivity shocks to any sector have a

higher effect on aggregate labor if the economy has a higher (sales share weighted) average of

variances of idiosyncratic shock times the cubed frequencies of non-adjustement (Eλ̃[σ
2α3]).

Third, shocks to a sector have a large effect on aggregate employment if its customers

(direct or indirect) have either a larger variance of idiosyncratic shocks or cubed frequency

of non-adjustment, as represented by the covariance between the column of Leontief inverse

corresponding to the shocked sector and the vector of products of variances of idiosyncratic

shocks and cubed frequencies of non-adjustment.

5.3 Aggregate measured TFP and Welfare

We can now derive the first-order movements in aggregate measured TFP, given by TFP ≡ C
L

and welfare. In response to a productivity shock to any sector i, the TFP response is given

by:

d log TFP

d logAi

=
d logC

d logAi

− d logL

d logAi

= λ̃i −
1

L

dL

d logAi

,

where dL
d logAi

is given in Proposition 5.

Note that from Proposition 5 it follows that in the limit of fully flexible prices (ρi = 0,∀i),
the first order change in aggregate labor is zero: dLflex

dlogAi
= 0,∀i. Letting TFP gap ≡ TFP

TFP flex

be the TFP gap, we can write its first-order change near the baseline as:

d log TFP gap

d logAi

= − 1

L

dL

d logAi

. (50)

It, therefore, follows that all first-order losses in aggregate TFP due to menu costs are

captured by the first-order movements in aggregate labor.

We can also characterize welfare losses coming from sticky prices driven by the presence

of menu costs. More specifically, we can distinguish two elements of these welfare costs: i)

the steady-state distortion that is present even without sectoral shocks and ii) the cost of

sectoral shocks. The next proposition characterizes both types of costs:

Proposition 6 (Welfare Costs). Denote δss the drop in consumption required to make the

household indifferent between living in a flexible-price frictionless economy and the economy
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with menu costs, absent sectoral shocks. Then

δss = 1− exp{1−Θ} (51)

Where Θ is given by equation (45) evaluated in the baseline equilibrium.

Denote δbci the consumption-equivalent welfare loss associated with the presence of sectoral

shock of magnitude ∆ logAi and menu costs, then

δbci = 1− exp

{
− dL

d logAi

∆ logAk

}
. (52)

Notice that the first-order change in aggregate labor is a sufficient statistic for the

consumption-equivalent welfare loss due to menu costs. In fact, one can use Corollary 1

to express the welfare loss in terms of observable statistics. In particular:

δbci ≈
{
ξEλ̃[σ

2α3]Si + ξℓCovλ̃[σ
2α3,Ψ(i)]

}
×∆ logAi. (53)

5.4 Properties of SS-centrality S

The sufficient statistic S provides an easily measurable object to quantify the effect of menu

costs on the labor share and, consequently, on TFP. Later in the paper, we study its empirical

distribution. For now, to better understand its properties, the following three remarks discuss

how it relates to common measures of network importance and its distribution.

Remark 1. The sufficient statistic S is related to the notion of Upstreamness introduced by

Antràs et al. (2012) U = Ŷ −1(ΨT )2ωc, where Ŷ −1 = diag({y−1
i }i) and yi is sector i output.

Formally, S = U · Y .

Remark 2. The sufficient statistic S is closely related to the degree distribution. Denote

the vector containing the nth outdegree as Dn = Ω̄nB. Then the S = Λ +
∑

n=0 nDn =∑
n=0(n+ 1)Dn.

Remark 1 shows that the supplier-of-supplier centrality is simply the product of up-

streamness and sectoral output. Upstreamness measures the average number of steps of

production between a sector and consumption across all paths in the graph. Our sufficient

statistic is, therefore, higher when sectors are large and upstream in the production network.

Remark 2 highlights how we can view supplier-of-supplier centrality as a weighted sum

of outdegrees, where we give increasingly larger weights to higher-order degrees. Recall that
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the Domar weight is defined as the sum of all outdegrees of an industry. The fact that TFP

and welfare losses are governed by S rather than the Domar weight Λ highlights again the

novel role of higher-order connections as the source of propagation of pricing frictions and

productivity shocks.

Remark 3. Suppose that the distribution of degree Dn follows a Power Law with a tail param-

eter χn, Then, the distribution of S is governed by a tail parameter χS = min{χ1, . . . , χn}.

Finally, Remark 3 shows that if any of the degree distributions are fat-tailed, then so is

the distribution of S. As S governs the size of welfare costs associated with sectoral shocks,

we can potentially have large welfare losses even when menu costs are very small.

6 Quantitative Evaluation

In this section, we quantitatively explore the properties of our economy. We start by cali-

brating the model to the US input-output data.

Calibration. We use the 2017 BEA Input-Output Table. We exclude government pur-

chases and redefine the table consistently. Next, we set υk/λk = .015, where λk is the

measured Domar weight so that menu costs represent 0.1% of industry revenues. We set

ϵk = 10, ∀k. We take the sector-specific expenditure share in consumption directly from the

I-O Table, where we define consumption as personal and government use. These parameters,

jointly with the sector-specific support of the shock distribution bk, determine the frequency

of price resetting for each sector. We use the data on the frequency of price adjustment

from Pasten et al. (2020) to back out a vector of bk. Our data includes 324 sectors for which

all these parameters can be estimated. Formally, we use bi =
2

√
2
(ϵ−1)2

ϵ

√
υi/λi

αi
to back out

the vector bi based on the empirical frequency of non-adjustment ai. We exclude sectors for

which the implied b is larger than 2 as well as sectors with a zero consumption share.1 After

the calibration, we work with 295 sectors.

1The exclusion of sectors with no consumption share is motivated by our comparisons with models without
networks. In these counterfactuals, a sector’s size is only driven by its importance as a supplier to the
household; hence, in an economy without a network, sectors with ωc = 0 would not exist. To maintain a
consistent set of sectors in all our experiments, we exclude them from the analysis.
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Figure 3: Distribution of dΘ/d logA

6.1 Results

We provide two sets of quantitative results. First, we describe how our economy behaves in

terms of labor share and TFP in response to sectoral shocks. Next, we study the welfare

costs associated with sectoral fluctuations in the presence of menu costs and input-output

networks.

Total Factor Productivity In our economy, changes in TFP in response to a sectoral

shock are given by

d log TFP

d logAi

= λ̃i −
d log Θ

d logAi

.

Recall that an economy without menu costs would only have the first term. To summarize

the importance of menu costs, Figure 3 shows the distribution of dΘ/d logA.

The first observation is that the contribution of menu costs to the impact of sectoral
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Figure 4: dΘ/d logA and SS-centrality S

shocks on TFP is itself fat-tailed. This should not be surprising since changes in the labor

share Θ are governed by the sufficient statistic S, which itself is the product of two fat-tailed

objects. Quantitatively, a 1% increase in sectoral TFP can generate up to 2 percentage

points increases in the labor share Θ.

Next, we use the result in Corollary 1. Figure 4 plots the relation between dΘ/d logA and

our sufficient statistic S. Corollary 1 tells us that the slope is governed by the elasticity ϵ, the

frequency of non-adjustment α, and the variance of idiosyncratic shocks σ2. The intercept is

given by the covariance between these and the Leontief element of each sector. Importantly,

our calibrated model suggests that the covariance term is negligible as the intercept is very

close to zero. As a consequence, our sufficient statistic provides a very good approximation

of the distortions associated with sectoral fluctuations.

Welfare We conclude by analyzing the welfare costs of sectoral productivity shocks in our

quantitative economy. First, in Figure 5, we plot the consumption equivalent welfare loss

associated with sectoral productivity shocks up to 10%. In an economy without a network

structure, these shocks induce welfare losses up to approximately 1% CEV. When we apply

the same sectoral fluctuations to the network economy, we note that these welfare losses are
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Figure 5: Welfare losses following sector-specific shocks

up to 3 times larger.

Finally, we study the sectoral heterogeneity in inducing welfare losses. In Figure 6, we

plot the distribution of the welfare losses associated with a 1% change in sectoral productivity

for each 2-digit sector in our economy. First, note that the distribution of welfare costs is

significantly more heterogeneous in an economy with a network structure, compared to one

without it. This is largely driven by a few sectors (durable and non-durable goods), whose

contribution to welfare losses increases approximately 6 fold. On the contrary, sectors like

health services, which are typically a large component of consumer expenditure but relatively

unimportant as suppliers of other industries, do not increase their contribution to welfare

losses.

7 Conclusion

We develop an analytically-tractable multi-sector model with a fully general input-output

structure and pricing decisions subject to small menu costs. We provide a novel analytic
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Figure 6: Distribution of S by 2-digit sector

aggregation result, which links first-order changes in macroeconomic variables such as GDP,

total factor productivity and welfare, to microeconomic shocks, the input-output topology,

as well as sector-specific average frequencies and sizes of price adjustment. Crucially, we

show that relative to the flexible-price efficient benchmark, input-output linkages amplify

the productivity and welfare losses associated with menu costs by an order given by a novel

centrality measure, which captures a sector’s importance as a supplier of important sup-

pliers. This generates a powerful amplification of productivity and welfare losses, since

input-linkages create two rounds of misallocation: first, within sectors due to the effect on

the location adjustment bands; second, across sectors due to the inefficient reallocation of

resources towards the key supplier sectors.
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