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QUESTION 1  ANSWER KEYS 

(a) The absolute value of the slope of the indifference curve at point 1 2( , )W W  is 1
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at a point on the 450 line it is 
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. On the other hand, the absolute value of the slope of any 

isoprofit line is 
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, which is greater than  
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 since Lp p . Thus a full-insurance contract 

(such as point F in the figure below) cannot be profit-maximizing, because there are points (such as 
point G) that are below the isoprofit line (thus corresponding to higher profits) and above the 
indifference curve (thus preferred to F by the customers). The indifference curve shown in the 
diagram below could be the reservation indifference curve or a higher one. The argument is the same. 
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The above picture refers to the case where the isoprofit line that goes through contract F 
corresponds to non-negative profits. There is also the possibility that the zero isoprofit line (the line 

with slope 
1

p
p




 that goes through the NI point) is entirely below the “delusional” reservation 

indifference curve, in which case the monopolist would not be able to make positive profits with 
any contract (and thus would not offer any contract, in particular the full-insurance contract F). 

(b.1) The subjective expected utility of no insurance is 61
7 7ln(2,200) ln(4,000) 8.21  .  The objective 

expected utility of no insurance is 1 4
5 4ln(2,200) ln(4,000) 8.17  .   

 (b.2) The profit-maximizing contract is that point on the reservation indifference curve at which the 

absolute value of the slope of the indifference curve is equal to 
1

p
p

, assuming that positive profits 

are possible: see the last paragraph of part (a).  Let h be the premium and d the deductible. Then we 
need to solve  
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Given the parameter values, the first equation is 1 4,000 1
6 4,000 4

h
h d
     

  and the second equation is 

61
7 7ln(4,000 ) ln(4,000 ) 8.21h d h     .  [The solution is h = 108.43,  d = 1,297.19.] 

(c) There must be a point on the reservation indifference curve at which the absolute value of the slope of 

the indifference curve is equal to 
1

p
p

.  This is the case if and only if the slope of the indifference 

curve at the no insurance point is greater than  
1

p
p

. Thus the necessary and sufficient condition is: 
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(d) To the I group the monopolist will offer the contract of part (b.2) (assuming that positive profits are 
possible: see the last paragraph of part (a)), while to the R group it will offer the full-insurance 
contract with premium h given by the solution to  

( ) ( ) (1 ) ( )U W h pU W L p U W     . 

(e.1)    
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(e.2) If there are mostly type R people in the population then the monopolist will offer only the full-
insurance contract with premium h given by the solution to ( ) ( ) (1 ) ( )U W h pU W L p U W      
thus serving only type R individuals. If there is a “sufficient number” of I types, then the monopolist 
will offer a full-insurance contract targeted to the R types that gives them a positive surplus and as 
contract targeted to the I type it will offer a partial insurance contract at the intersection of two 
indifference curves (the reservation indifference curve of the I types and the indifference curve of the 
R types that goes through the contract targeted to them), as shown in the following figure ( IC  is the 
contract targeted to the I types and RC  is the contract targeted to the R types). 
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(f) In case (b.2) the I types are the opposite of exploited: in terms of the objective probability of loss, they 
get higher expected utility than if they were not insured (using the objective probability to evaluate 
the latter).  
In case (d) the R types are just as well off as they would be without insurance, while the I types are 
better off.  
In case (e), the R types are at least as well off as they would be without insurance, so are not exploited 
(they are as well of as without insurance if the monopolist serves only the R types and better off if the 
monopolist serves both types). The I types get higher expected utility than if they were not insured 
(using the objective probability to evaluate the latter).  
So, in all three cases no customer is exploited. 

 



Question 2

Consider an exchange economy with two commodities. Suppose that for each individual, the

utility function ui : R2
+ → R is continuous, strictly quasi-concave and strictly monotone, and

her endowment is strictly positive: w i ∈ R2
++.

If we fix the price of good 1 at 1 and denote the price of commodity 2 as p ∈ R++, the

individual demands are

x i(p) = arg max
x∈R2

+

˘
ui(x) : x1 + px2 ≤ w i

1 + pw i
2

¯
:

These functions are continuous and you can take for granted that each of them satisfies the

following properties:

(i) for all ∆ > 0, there exists ıi > 0 such that x i2(p) > ∆ if p ≤ ıi ; and

(ii) for all ∆ > 0, there exists ı̄i > 0 such that x i1(p) > ∆ if p ≥ ı̄i .

(These properties simply say that if one commodity becomes arbitrarily cheap while the other

remains expensive, the individuals’ demand for the cheap commodity becomes unboundedly

large.)

Define the function Z(p) =
P

i [x
i
2(p)− w i

2].

(a) How do you interpret the function Z?

(b) Argue that if Z(p∗) = 0, then ((1; p∗); (x i(p∗))i∈I) is a competitive equilibrium for the

economy.

(c) Argue that there exist ı > 0 and ı̄ > 0 such that Z(p) > 0 if p ≤ ı and Z(p) < 0 if

p ≥ ı̄.

(d) The intermediate value theorem says the following:

Suppose that X ⊆ R is an interval, function f : X → R is continuous, and

x; x̄ ∈ X are such that x < x̄ , f (x) > 0, and f (x̄) < 0. Then, there exists

x∗ ∈ (x; x̄) for which f (x∗) = 0.

Use this theorem to prove that there exists p∗ ∈ R++ for which Z(p∗) = 0.

(e) Argue that this economy has at least one competitive equilibrium.
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(f) Consider now the demand of agent i = 1 as a function also of her endowments:

x1(p; w 1) = arg max
x∈R2

+

˘
u1(x) : x1 + px2 ≤ w 1

1 + pw 1
2

¯
:

Argue that

x1(p; w 1 + ‹(p;−1)) = x1(p; w 1):

(g) Redefining

Z(p; w 1) = [x12 (p; w
1)− w 1

2 ] +
X
i ̸=1

[x i2(p)− w i
2];

argue that for all ‹

Z(p; w 1 + ‹(p;−1)) = Z(p; w 1) + ‹:

(h) Formalize the following claim, which the previous point proves:

Suppose that (1; p) is a competitive equilibrium price vector of an exchange

economy with continuous and strictly quasi-concave utility functions, and with

strictly positive endowments for individual i = 1. There exists another econ-

omy where:

(i) the only difference is the endowments of agent i = 1,

(ii) the magnitude of this difference is arbitrarily small, and

(iii) (1; p) is not a competitive equilibrium price vector of this other economy.

Sketched Answers:

(a) This is the economy’s aggregate excess demand function for good 2.

(b) Since the definition of each function x i implies individual rationality, we only need to

check market clearing.

Suppose that Z(p∗) = 0. By definition, the market for good 2 is clearing:
P

i x
i
2(p

∗) =P
i w

i
2. Since preferences are strictly monotone, we can invoke Walras’s law to argue
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that the market for good 1 clears too. Alternatively, monotonicity implies that x i1(p
∗) +

p∗x i2(p
∗) = w i

1 + p∗w i
2 for all i . This implies that

P
i [x

i
1(p

∗)− w i
1] =

P
i p

∗[w i
2 − x i2(p

∗)] = p∗Z(p∗) = 0:

Incidentally, observe that Z(p∗) = 0 is also a necessary condition for (1; p∗) to be a

competitive equilibrium price vector.

(c) For each i , the property (i) above implies that there is ıi > 0 such that x i2(p) > w i
2

when p ≤ ıi . Let ı = mini{ıi}.

Similarly, property (ii) implies that there is ı̄i > 0 such that x i1(p) > w i
1 when p ≥ ı̄i .

By local non-satiation of preferences, x i1(p)− w i
1 = p[w i

1 − x i1(p)], so x i2(p) < w i
2 when

p ≥ ı̄i . Let ı̄ = mini{ı̄i}.

(d) Since all utility functions are continuous, so is function Z. By construction, it must be

true that ı < ı̄: otherwise, for any ı̄ ≤ p ≤ ı, Z(p) < 0 < Z(p). Since, moreover,

Z(ı) > 0 > Z(ı̄), the result follows immediately from the intermediate value theorem.

(e) This follows from parts (d) and (b).

(f) Just note that

(1; p) · [w 1 + ‹(p;−1)] = (1; p) · w 1 + ‹(1; p) · (p;−1) = (1; p) · w 1:

(The first individual’s nominal income at prices p is the same under the two endowment

vectors.)

(g) By direct computation, for all ‹

Z(p; w + ‹(p;−1)) = [x12 (p; w + ‹(p;−1))− (w2 − ‹)] +
X
i ̸=1

[x i2(p)− w i
2]

= [x12 (p; w)− w2] +
X
i ̸=1

[x i2(p)− w i
2] + ‹

= Z(p; w) + ‹;

where the second equality comes from the previous point.

(h) The previous point proves the following:
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Let (p; x) be a competitive equilibrium of economy {I;u;w}, and let " > 0.

There exists a profile of endowments w̃ such that:

(i) for all i ̸= 1, w̃ i = w i ;

(ii) ∥w̃ 1 − w 1∥ < "; and

(iii) x1(p; w̃ 1) +
P

i ̸=1 x
i(p) ̸=

P
i w̃

i .

To see why this is the case, note that one can always find ‹ ̸= 0, with |‹| small enough

that parts (ii) and (iii) are guaranteed.

Comment: Parts (a)–(e) constitute a simple existence argument for economies with two

commodities. Unfortunately, this argument doesn’t extend to an arbitrary number of com-

modities, and it becomes necessary to use a more sophisticated proof using fixed point theory.

Parts (f)–(h) can be extended to any number of commodities, on the other hand. They con-

stitute the first steps on the argument for local uniqueness of competitive equilibrium, which

uses transversality theory. Existence and local uniqueness are some of the positive results

that we didn’t have time to cover in class.
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The economics faculty is at lunch in the department. Professor Clark mentions that
he taught Giffen goods in his principles class today. He laments that it is hard to find
examples of Giffen goods. He suggests that wine could be a Giffen good as people
sometimes buy it when the price is higher rather than lower. Professor Rapson interjects
that when people buy somewhat pricier wine rather than cheap wine, it is most likely
due to the fact that they cannot distinguish bad from good wine and take the price as
a quality signal. Professor Schipper quips that if Professor Clark had paid attention to
consumer theory when studying at Harvard, then he would know that Giffen good implies
inferior good. And clearly wine is not an inferior good. There is a moment of silence. It is
not clear whether economic logic stifled the conversation or Professor Schipper’s arrogant
undertone. Realizing latter, Professor Schipper asks (more rhetorically than seriously)
how to overcome the argument that Giffen good implies inferior good.

a. Does the proposition that Giffen good implies inferior good depend on the existence
of a utility function? Explain.

No. WARP implies that the Slutsky substitution matrix is negative semi-definite. This implies
that the own-price substitution effect is non-positive (i.e., entries at the diagonal of the Slutsky
substitution matrix). This in turn implies the proposition. (Look at my slides on WARP for
details.)

b. It dawns on Professor Schipper that we have to go beyond standard consumer
theory in order to overturn the proposition that Giffen good implies inferior good.
Wine is consumed in social settings. Could consumption externalities allow for a
Giffen good that is not inferior? Being a slow thinker, Professor Schipper poses
this as a prelim problem. Here is the problem description:

Professor C spends his wealth w on wine and other goods. We denote by x1 ≥ 0
and y1 ≥ 0 Professor C’s spending on other goods and wine, respectively. Professor
C also cares about the wine that others drink. Since Professor Schipper only theo-
rizes about alcohol, we enlist the help of Professor T who has non-trivial practical
experience with wine. Denote by y2 the amount of wine consumed by Professor T.1

The price of wine is p > 0. The price of spending on other goods is normalized to
1. Professor C’s problem is now

max
x1,y1

u(x1, y1, y2)

subject to the budget constraint

x1 + py1 ≤ w.

1As always, names, characters, and incidents are either the products of the author’s imagination or
used in a fictitious manner. Any resemblance to actual persons, living or dead, or actual events is purely
coincidental.



As usual, utility functions of economists are well-behaved, that is, the utility func-
tion of Professor C is concave and continuously differentiable with strict positive
gradient in the interior of its domain for every y2.

Ignoring the non-negativity constraints, write down the Lagrangian and state the
first-order conditions. Assuming an interior and unique solution, simplify as much
as possible and arrive at a system of equations that does not involve multipliers.
At the moment, you do not need to solve for solutions x1(p, w, y2) and y1(p, w, y2).
Are the first-order conditions also sufficient?

The Lagrangian is given by

L(x1, y1, λ) = u(x1, y1, y2)− λ1(x1 + py1 − w).

The first-order conditions are

∂u(x1, y1, y2)

∂x1
− λ = 0

∂u(x1, y1, y2)

∂y1
− λp = 0

λ(x1 + py1 − w) = 0

Assuming that the budget constraint is binding, the first-order conditions can be reduced to

∂u(x1, y1, y2)

∂x1
p− ∂u(x1, y1, y2)

∂y1
= 0

x1 + py1 = w

This system of equations does not involve any multipliers.

Since the utility function is assumed to be concave and the constraints are linear, the first-order
conditions are also sufficient.

c. From now on, assume that

u(x1, y1, y2) := x1 + a · y − 1

2
y ·By (1)

with

a :=

(
a1
a2

)
>> 0 (2)

y :=

(
y1
y2

)
(3)

B :=

(
b11 b12
b21 b22

)
(4)



We assume that B is a positive definite symmetric matrix.

Specialize the system of equations from part a. to the utility function given by
equations (1) to (4). We restrict prices, wealth, and parameters such that a satiation
point of the utility function is outside any budget sets we consider.

Observe that

∂u(x1, y1, y2)

∂x1
= 1(

∂u(x1,y1,y2)
∂y1

∂u(x1,y1,y2)
∂y2

)
= a−By

Thus, the system of equations from a. above specializes to

p− (a1 − b11y1 − b12y2) = 0

x1 + py1 = w

d. Use the system of equations from part c. to solve for Professor C’s Walrasian
demand functions.

From the first equation, we get

y1(p, w, y2) =
a1 − b12y2 − p

b11

Substituting this equation into the second equation we obtain

x1(p, w, y2) = w − py1(p, w, y2)

= w − p

(
a1 − b12y2 − p

b11

)

e. Check whether wine is a Giffen good for Professor C. How does his demand for
wine change with the price?

We are interested in the sy1y1
-entry of the Slutsky substitution matrix. Since he has quasi-linear

preferences that are linear in spending on other goods, there is no wealth effect for wine. Thus,

sy1y1
=

∂y1(p, w, y2)

∂p
+

∂y1(p, w, y2)

∂w
y1(p, w, y2) =

∂y1(p, w, y2)

∂p
= − 1

b11
.

Since B is positive definite, we must have b11 > 0. Thus, Professor C’ demand for wine goes up
when the price goes down. It appears that wine is not a Giffen good for Professor C.



f. How is Professor C’s consumption of wine affected by Professor T’s consumption
of wine?

Again, since B is positive definite, we must have b11 > 0. Now

∂y1(p, w, y2)

∂y2
= −b12

b11

Thus,

∂y1(p, w, y2)

∂y2
> 0

if and only if b12 < 0.

g. Professor C thinks that our earlier answer about how his consumption of wine
responds to changes of the price of wine is wrong. He argues that if he cares
about Professor T’s consumption of wine, then there should also be an effect of the
price change via Professor T’s change of consumption of wine. Let’s analyze this
argument. Obviously, we need a model for Professor T’s consumption. Assume
that his utility function is given by

v(y1, x2, y2) = y1x2y2

That is, Professor T also cares about Professor C’s consumption. Here x2 denotes
Professor T’s spending on other goods. His budget set is given by

x2 + py2 ≤ m

for m > 0. Derive a condition on the parameters under which Professor C’s con-
sumption of wine (not a typo; we care about Professor C’s consumption) is decreas-
ing in the price of wine and explain. For this, you will have to derive explicitly
Professor T’s demand for wine.

Note that Professor T has Cobb-Douglas preferences. Using as optimality condition that the
marginal rate of substitution equal to the price ratio,

∂v(y1,x2,y2)
∂x2

∂v(y1,x2,y2)
∂y2

=
1

p

y2
x2

=
1

p
py2
x2

= 1

1 +
py2
x2

= 2

x2

x2
+

py2
x2

= 2

m

x2
= 2

m

2
= x2



which implies py2 = m
2 . Thus, y2(p,m, y1) =

m
2p . The function is constant in y1. Thus, we omit

y1 as argument. Now using the chain rule

Dpy1(p, w, y2(p,m)) =
∂y1(p, w, y2(p,m))

∂p
+

∂y1(p, w, y2(p,m))

∂y2

∂y2(p,m)

∂p
=

b12
m
2p2 − 1

b11
< 0

if b12 ≤ 0. This is kind of intuitive because we know that when b12 < 0, then he would decrease
his consumption of wine when Professor T decreases his. Since a price increase lets Professor T
decrease his consumption of wine, it also decreases Professor C’s consumption. So clearly, under
this condition wine is not a Giffen good.

h. Find a condition on the parameters such that Professor C’s consumption of wine
increases in the price of wine. Argue that wine is not an inferior good to him. Why
do we have a counterexample to the proposition? Explain what’s going on.

If b12 > 0, then it possible that he increases his consumption of wine when the price goes up. For
instance, if Professor T’s wealth is sufficiently large, i.e.,

m >
2p2

b12
,

then Professor Clark’s consumption of increases in p. This is also intuitive. If b12 > 0, then
Professor Clark wants to increase his consumption of wine when Professor T decreases his, i.e.,
∂y1(p,w,y2(p,m))

∂y2
< 0. If Professor T’s wealth is sufficiently large, Professor T also reacts more to

price changes in absolute terms. This may overcompensate his “intrinsic” desire to reduce his
consumption of other goods when the price increases. In such a case, wine behaves like a Giffen
good for Professor C even though it is not inferior because there is no wealth effect! That is,
with consumption externalities, it is not true anymore that Giffen good implies inferior good. So
Professor Clark is right after all although perhaps in a way he did not anticipate.

Notice though that the Giffen good effect is not due to both professors merely dine and wine
together. Rather, it is due to Professor C getting so upset about Professor T’s large negative
price response that he needs extra wine to cope with it.

i. Did we miss something in our analysis? We know that Professor T also cares
about Professor C’s consumption of wine. Shouldn’t Professor T’s consumption of
wine also depend on Professor C’s consumption of wine? In other words, aren’t
both professors’ consumption decisions interdependent so that we would need game
theory to solve the problem? Explain why we do not need a fixed-point argument
like Nash equilibrium (or an iterated best “wine consumption” response argument)
to solve the problem.

Although Professor T cares about Professor C’s consumption of wine because y1 enters Professor
T’s utility function, it just scales his utility up or down but it does not affect Professor T’s wine
consumption behavior. The fact that Professor T’s consumption of wine does not depend on
Professor C’s consumption is an artifact of his Cobb-Douglas utility function. We can see this
clearly when we go from the first to the second equation of the answer to f. where y1 cancels out
in the numerator and denominator.


