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Abstract

We address the estimation of factor-augmented panel data models using observed measure-
ments to proxy for unobserved factors or loadings and explore the use of internal instruments
to address the resulting endogeneity. The main challenge consists in that economic the-
ory rarely provides insights into which measurements to choose as proxies when several are
available. To overcome this problem, we propose a new class of estimators that are linear
combinations of instrumental variable estimators and establish large sample results. We also
show that an optimal weighting scheme exists, leading to efficiency gains relative to an in-
strumental variable estimator. Simulations show that the proposed approach performs better
than existing methods. We illustrate the new method using data on test scores across US
school districts.
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1 Introduction

Applications of factor models in economics, finance, and psychology continue to be extremely

popular. In economics, the identification and estimation of factor models has received substantial

attention in a number of areas, from macro-finance to labor economics and development (Bernanke

et al. 2005, Kim & Oka 2014, Attanasio et al. 2020). Important work has studied the role of

cognition, personality traits, and academic motivation on child development (Cunha & Heckman

2007, 2008, Borghans et al. 2008, Heckman et al. 2013). Factor-augmented regressions as in Stock &

Watson (1999, 2002) are known to improve forecasts of macroeconomic time series such as inflation

and industrial production. The literature also includes new models for high-dimensional data sets

(Bai & Wang 2016), and methods for panels with large cross-sectional and time-series dimensions,

following the influential work by Pesaran (2006) and Bai (2009). In panel data econometrics, one

popular interpretation treats the latent factors as a generalization of traditional fixed effects models

(Harding & Lamarche 2014, Chudik & Pesaran 2015, Moon & Weidner 2015, 2017, Ando & Bai

2016, 2017, Juodis & Sarafidis 2018, Harding et al. 2020, among others).

In this paper, we focus on a class of estimators that use internally generated instruments. Papers

by Heaton & Solo (2012), and Juodis & Sarafidis (2020), among others, also propose to estimate

similar models using internally constructed instruments, an idea that can be traced back to the work

of Madansky (1964). These estimators use outcome variables to proxy the factors (or loadings) and

then use other outcome variables as instruments. Slope parameters are identified, but the factors

are not identified without further restrictions. In some cases, identification is achieved through the

use of dedicated measurements, where a priori knowledge is used to associate certain measurements

uniquely with specific factors (see Cunha et al. 2021, as an example of a test associated uniquely

with a given skill).

A challenge for this approach is that the selection of the measurements to use as a proxy for

the factors (or loadings) is, in many cases, arbitrary. Economic theory often does not provide a

framework to select measurements or proxies when several are available. To address this challenge,
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we propose an estimator that combines information from each subset of measurements used to

proxy the factors. We demonstrate that there exists a combination of estimators that improves the

efficiency of an estimator that uses an arbitrary subset, and we show that the proposed estima-

tor is consistent and asymptotically normal under standard conditions. Therefore, the proposed

approach eliminates subjective choices made by practitioners, while improving the efficiency of

existing instrumental variable estimators.

This paper develops a new class of estimators that are simple to implement and offer prac-

titioners objective evidence when they lack concrete guidance on their choices. The estimation

of slope parameters using instrumental variables is investigated in Bai & Ng (2010), Harding &

Lamarche (2011), Ahn et al. (2013), Robertson & Sarafidis (2015), Juodis & Sarafidis (2020),

Norkutė et al. (2021), and Juodis & Sarafidis (2022), among others. This literature uses instru-

mental variables (IVs) based on defactored covariates via principal components, proxies based on

observables, or external instruments. Holtz-Eakin et al. (1988) consider a panel data model with

one factor and identify reduced-form parameters using instrumental variables. On the other hand,

the latent factor structure is estimated in Madansky (1964), Hägglund (1982), and Heaton & Solo

(2012). This literature uses internal instruments based on response variables. In contrast to the

existing literature using IVs in the estimation of pure factor models, we extend this approach to

factor-augmented panel data models and develop the corresponding estimation theory.

Motivating example. Throughout the paper, we illustrate our results using an example based

on the empirical application. We use district-level administrative data on test scores by subject

in grades 3 to 8 in over 2,000 school districts. We estimate a model for educational attainment in

mathematics in middle school, ygj = x′
gjγ + λgfj + ugj, where ygj is the average normalized test

score in district g in grade j, xgj is a vector of regressors, λg is a latent factor loading, fj is a

factor, and ugj is the error term. In our dataset, there are 6 possible choices of measurements to

proxy λg. Each proxy creates classical measurement error bias, which can be addressed by using

other measurements of academic achievement as internal IVs.
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Figure 1: The effect of percentage of minority students on middle school math. The available
proxies for the district specific loading are math test scores (grade 3 to 5) and reading test scores
(grade 6 to 8). GVE denotes group variable estimator, IEE denotes interactive effects, and WGVE
denotes the weighted group variable estimator.

4



The impact of these choices on the estimation of the first coefficient, γ1, is documented in Figure

1. We report point-estimates and 95% confidence intervals obtained by employing the proposed

methods, and we also report results obtained by the interactive effects (IEE) estimator (Bai 2009)

for comparison. The group variable estimator (GVE), which is presented in Section 2, depends

on choosing a measurement of achievement to proxy λg arbitrarily from the available set. The

weighted group variable estimator (WGVE) proposed in Section 3 combines estimates based on all

the proxies, producing results that do not vary by the choice of measurement. WGVE offers an

improvement in the precision of the estimator in comparison to GVE.

Monte Carlo explorations of the small sample performance of the proposed estimators are

discussed in Section 4. The fully developed empirical illustration of the proposed approach is

presented in Section 5 highlighting insights into academic performance and the heterogeneous

nature of school districts in the US. Section 6 concludes. Mathematical proofs are offered in the

online appendix.

2 Model and estimation

This paper considers the following model for g = 1, 2, · · · , G and j = 1, 2, · · · , J :

ygj = x′
gjγ + λ′

gfj + ugj, (1)

where ygj ∈ R is a response variable, xgj ∈ X ⊆ R
px×1 is a vector of independent variables, λg =

(λg,1, λg,2, . . . , λg,r)
′ ∈ Λ ⊆ R

r×1 is a vector of factor loadings, fj = (fj,1, fj,2, . . . , fj,r)
′ ∈ F ⊆ R

r×1

is a vector of latent factors, and ugj is an error term. The number of factors r does not need to be

known, as one can determine the number of factors following a number of approaches (e.g., Bai &

Ng 2002, Onatski 2010, Trapani 2018).

Standard notation for panel data factor models would have a dependent variable yit with sub-

scripts i for cross-section units and t for time. Instead, we use g (instead of i) to refer to clusters

5



and j (instead of t) to refer to observations within a cluster. This emphasizes that the index j may

not refer to time, but instead to any type of repeated observation within a cluster g. For instance,

in the empirical application presented in Section 5, ygj is the average test score in school district

g corresponding to grade j. The number of observations J does not vary with g, although our

analysis can be extended to accommodate this case.

The observations within g are grouped into three sets A, B, and C. Denote the cardinality of

the set S by |S| = mS. The set A contains the indexes for which we wish to estimate the factors.

For instance, practitioners might be interested in the estimation of grade-level factors affecting

academic achievement in middle school and not in elementary school, and vice versa. Thus, we are

interested in the estimation of γ and (fj, j ∈ A). Once estimators of γ and fj are available, it is

straightforward to construct an estimator for λg (see, e.g., Heaton & Solo 2012, Bai & Ng 2013).

The set B contains the indices of the observations we will use as proxies for the loadings. The set

C contains the indices of the observations we will use as instrumental variables.

The model satisfies the following conditions:

A1.
{(

ygj,x
′
gj

)
, j = 1, 2, · · · , J} is independent across g = 1, 2, · · · , G conditional on fj for 1 ≤

j ≤ J .

A2. The variable ygj is generated by model (1). The sets A,B,C are a partition of {1, 2, · · · , J},

with mA ≥ 1 and mC ≥ mB ≥ r.

A3. E (λgugj) = 0 for all g and for all j ∈ A ∪B; E (ughugj) = 0 for all g and for all h ∈ (A ∪B)

and j ∈ C; E (xghugj) = 0 for all g and for all 1 ≤ h, j ≤ J .

Assumption A1 is a sampling assumption that restricts dependence across g. Following A2,

data are generated by model (1) and we can partition the observations as described above, with

a sufficient number of instruments, mC , and subsets of measurements, mB. Lastly, Assumption

A3 guarantees that the error term is not correlated with the loadings and independent variables,

and that it is essentially serially uncorrelated. This assumption allows us to use observations from
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the set C as internal instruments. This assumption may be relaxed if external instruments are

available.

2.1 Overview of methods and practical challenges

For ease of exposition, we set mB = r, i.e., the number of observations in the subset B is equal to

the number of factors. Everything that follows can be modified to allow for mB > r, as shown in

Section 2 of the online appendix. We start by collecting (1) over B, obtaining

ygB = xgBγ + f ′
Bλg + ugB, (2)

where a B subscript indicates that the elements were gathered to form ygB = (ygj, j ∈ B) ∈ R
r×1,

fB = (fj, j ∈ B) ∈ R
r×r, xgB = (xgj, j ∈ B) ∈ R

r×px , and ugB = (ugj, j ∈ B) ∈ R
r×1. It is

standard in the literature to consider the following condition, which controls the behavior of fB

and guarantees that all parameters in equation (4) are well-defined.

A4. The r × r matrix of factors fB is invertible.

Assuming invertibility of fB, we solve for λg in equation (2):

λg = [f ′
B]

−1
(ygB − xgBγ − ugB) . (3)

Substituting the representation of the loading (3) into equation (1), one obtains, for each j ∈ A:

ygj = y′
gBθjB + x′

gjγ − θ′
jBxgBγ +

(
ugj − θ′

jBugB

)
, (4)

where θjB = f−1
B fj. By noting that −θ′

jBxgBγ = −∑r
k=1 θj,kx

′
g,kγ = h′

gBδjB, where hgB =

vec(x′
gB) and δjB = −θjB ⊗ γ, we obtain the following reduced form equation:

ygj = y′
gBθjB + x′

gjγ + h′
gBδjB + vgj, (5)
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where vgj = ugj − θ′
jBugB.

Although θjB, δjB and γ could be estimated by standard methods for linear models, the variable

in the first term of equation (5), yjB, is endogenous because it is correlated with ugB, which appears

as part of the error term, vgj. We propose to estimate the parameters in equation (5) using internal

instruments ygC . The use of internal instruments leads to identification of the slope parameter γ,

and the reduced form coefficients θjB and δjB. The vector θjB is a transformation of the factor

fj, and similar to results established in the literature, factors are not separately identified without

further restrictions. Moreover, it is easy to see that the within g correlation is different from zero.

Even if we assume that the errors in (1) are independent within g for j ∈ A, then for j, h ∈ A

and j �= h, Cov(vgj, vgh) = θ′
jBVar(ugB)θhB. To handle this dependence, we employ the general

framework developed in Hansen & Lee (2019).

Let ygA and vgA denote vectors of dimension mA × 1, and xgA denote a matrix of dimension

mA × px. It is convenient to stack the equations corresponding to set A, and write the system as

ygA =
(
ImA

⊗ y′
gB

)
θAB + xgAγ +

(
ImA

⊗ h′
gB

)
δAB + vgA, (6)

where θAB = (θjB, j ∈ A) ∈ Θ ⊆ R
py×1, where py = mAr, and δAB = (δjB, j ∈ A) ∈ Δ ⊆ R

pxpy×1.

For notational convenience, we define the dependent variable yg := ygA, the explanatory variables

Xg :=
[
ImA

⊗ y′
gB xgA ImA

⊗ h′
gB

]
,

and the instrumentsZg :=
[
ImA

⊗ y′
gC xgA ImA

⊗ h′
gB

]
. The matrixXg is of dimensionmA×kx,

where kx = py + px(1 + py), and Zg is of dimension mA × kz, where kz = pz + px(1 + py) and

pz = mAmC . By Assumption A2, mC ≥ r, and therefore, kz ≥ kx.

Furthermore, let β := (θ′
AB,γ

′, δ′
AB)

′ and eg := vgA, so that (6) can be written as yg = Xgβ+eg.
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The corresponding two-stage least squares (2SLS) estimator is

β̂ =

⎛⎝ G∑
g=1

X ′
gZg

(
G∑

g=1

Z ′
gZg

)−1 G∑
g=1

Z ′
gXg

⎞⎠−1
G∑

g=1

X ′
gZg

(
G∑

g=1

Z ′
gZg

)−1 G∑
g=1

Z ′
gyg. (7)

We denote the estimator in (7) as Group Variable Estimator (GVE) because it is based on grouping

observations according to the three partitions in Assumption A2.

The GVE estimator has a number of attractive features. First, the implementation is trivial.

The estimator belongs to the class of 2SLS estimators with internal instruments for the linear

system (6). Second, we can easily accommodate additive fixed effects and endogenous regressors

xgj that are correlated with the error term ugj by using external instruments.

Motivating example (cont.) We estimate a model for educational attainment in mathematics

in middle school using data from G districts in grades 3 to 8. In this application, J = 9, where

the first three math test scores corresponds to elementary school (3rd to 5th grade), the next

three scores corresponds to middle school math, and the last 3 are measurements corresponding

to reading scores in middle school. (The three elementary school reading tests are ignored as

insufficiently relevant for middle school math.) Thus, A = {4, 5, 6} corresponding to grades 6, 7

and 8 in mathematics. If we select B = {1} (3rd grade math) as shown in Figure 1 and consequently

C = {2, 3, 7, 8, 9}, the GVE estimate of γ1 is -0.429, while the interactive effects (IEE) estimate

is -0.495. These results suggest that a ten percent increase in the proportion of minority students

decreases average math scores by 13 to 17 percent of a standard deviation. Despite its practical

simplicity, the GVE estimator has an important drawback. It depends on the choice of B even if

the set A is held fixed. For instance, in Figure 1, if a practitioner chooses B = {8} (7th grade

reading) instead of B = {1} (3rd grade math), the estimate of the slope effect is -0.342 which

represents a 20 percent increase. The solution we pursue in Section 3 is to average over multiple

subsets.
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2.2 Large sample results

We now establish conditions under which the estimator in (7) is consistent and asymptotically

normal. The results are obtained for fixed J , and therefore A,B,C are fixed too. We will leverage

the fact that our estimator can be viewed as a 2SLS estimator for clustered data. This allows us to

use the asymptotic theory in Hansen & Lee (2019), in particular their results for 2SLS estimation

in Theorems 8 and 9.

To state our results, define the total number of observations n = G×mA and let

Qn =
1

n

G∑
g=1

E
[
Z ′

gXg

]
, Wn =

1

n

G∑
g=1

E
[
Z ′

gZg

]
, Ωn =

1

n

G∑
g=1

E
[
Z ′

gege
′
gZg

]
,

Vn =
(
Q′

nW
−1
n Qn

)−1
Q′

nW
−1
n ΩnW

−1
n Qn

(
Q′

nW
−1
n Qn

)−1
.

We consider the following assumptions:

A5. For some s > 2, supg,j E |ygj|2s < ∞ and supg,j,k E |xgj,k|2s < ∞.

A6. Let ζmin(·) denote the smallest eigenvalue, and KW and KΩ be constants. Then, (i) Qn has

full rank and ζmin (Wn) ≥ KW > 0, and (ii) ζmin (Ωn) ≥ KΩ > 0.

The result in Theorem 1 is obtained considering several standard assumptions. Assumption A5

is a boundedness condition on the regressors and outcome variable that allows for distributional

heterogeneity, and is sufficient for Hansen & Lee (2019)’s central limit theorem. The first part

of Assumption A6 asks for sufficient correlation of the instruments with the regressors, and the

second part introduces a standard condition that guarantees a well-defined limiting distribution.

Then, we have the following result:

Theorem 1. Under Assumptions A1-A6(i), as G → ∞, the GVE defined in (7) is consistent, i.e.

β̂
p→ β. Moreover, under Assumptions A1-A6, as G → ∞,

V −1/2
n

√
n
(
β̂ − β

)
d→ N (0, I) .
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The proof of Theorem 1 is presented in the online appendix, and consists of verifying the

conditions for Theorems 8 and 9 in Hansen & Lee (2019). Their requirement that the observations

from each g are asymptotically negligible (cf. their Assumptions 1, 2) is automatically satisfied, as

our panel is balanced by construction, and because we use the same fixed set A for each g.

3 Combining GVE estimators

The issue of multiple available partitions deserves further treatment as there are many situations

where economic theory does not offer concrete guidance. In those situations, practitioners face a

possibly large number of subsets B to choose from. Figure 1 illustrates that it is not clear a priori

how to select measurements to proxy the loadings following equation (3), leading to important

practical questions. Considering the first partition might be arbitrary, as noted in a series of recent

papers (Attanasio, Meghir & Nix 2020, Del Bono, Kinsler & Pavan 2020), see also the discussion

by Freyberger (2021) in a related context.

There are QJ ways of choosing the subset B in equation (2) with mB = r elements, where

QJ =

(
J −mA

mB

)
=

(J −mA)!

mB! (J −mA −mB)!
≤ 2J−mA . (8)

Let q ∈ {1, 2, . . . , QJ} index a choice of B ⊂ {1, 2, . . . , J} \ A from the collection of all possible

sets {B1, B2, . . . , BQJ
}. For each q, we can construct an estimator

β̂q =

⎛⎝ G∑
g=1

X ′
g,qZg,q

(
G∑

g=1

Z ′
g,qZg,q

)−1 G∑
g=1

Z ′
g,qXg,q

⎞⎠−1
G∑

g=1

X ′
g,qZg,q

(
G∑

g=1

Z ′
g,qZg,q

)−1 G∑
g=1

Z ′
g,qyg,

(9)

where yg is as before, and the explanatory variables and instruments are constructed from levels

of ygj over the sets Bq and Cq ⊆ {1, 2, · · · , J} \ (A ∪Bq) corresponding to partition q:

Xg,q =
[
ImA

⊗ y′
gBq

xgA ImA
⊗ h′

gBq

]
, and Zg,q =

[
ImA

⊗ y′
gCq

xgA ImA
⊗ h′

gBq

]
.
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Before introducing the main estimator in the next section, we obtain the joint distribution of

(β̂′
1, β̂

′
2, · · · , β̂′

QJ
)′ in Theorem 2 below. To establish the result, let eg,q = yg−Xg,qβq, and consider

the following definitions:

Qn,q =
1

n

G∑
g=1

E
[
Z ′

g,qXg,q

]
, Wn,q =

1

n

G∑
g=1

E
[
Z ′

g,qZg,q

]
, Ωn,ql =

1

n

G∑
g=1

E
[
Z ′

g,qeg,qe
′
g,lZg,l

]
,

Σn,ql =
(
Q′

n,qW
−1
n,qQn,q

)−1
Q′

n,qW
−1
n,qΩn,qlW

−1
n,l Qn,l

(
Q′

n,lW
−1
n,l Qn,l

)−1
,

and let Σn be a kxQJ × kxQJ matrix with typical block Σn,ql, that is Σn = [Σn,ql]. Similarly,

let Ωn = [Ωn,ql] and Ξn = (IQJ
⊗H)Σn(IQJ

⊗H)′, where H =
[
0px×py Ipx 0px×pxpy

]
selects the

elements corresponding to γ from βq = (θ′
ABq

,γ ′, δ′
ABq

)′. Below, we suppress the dependence of

the reduced form parameters θ and δ on A, and we will write βq = (θ′
q,γ

′, δ′
q)

′.

Consider the following assumptions:

B1. Condition A3 holds for Bq and Cq for 1 ≤ q ≤ QJ , and Condition A4 in Theorem 1 also holds

for 1 ≤ q ≤ QJ , so that, for each q, fBq is an invertible matrix of dimension r × r.

B2. Let ζmin(·) denote the smallest eigenvalue, and let KW and KΩ be constants. (i) Condition

A6(i) in Theorem 1 holds for all 1 ≤ q ≤ QJ , so that Qn,q has full rank, and ζmin (Wn,q) ≥ KW > 0.

(ii) Additionally, ζmin (Ωn) ≥ KΩ > 0.

Assumptions B1 and B2 are generalizations of Assumptions A3, A4 and A6 in Theorem 1. The

first part of B1 implies that the error term is independent of the loadings and serially uncorrelated,

implying the validity of instruments in Cq across the QJ ways of choosing Bq. The second part

of condition B1 imposes restrictions to generate suitable non-singular transformations across all

partitions. In practice, the second part of Condition B1 might not hold for all q. In this case,

one can restrict the set of q for which the assumption is expected to hold. Lastly, condition B2

guarantees a well-defined asymptotic distribution across feasible subsets.

Let β =
(
β′
1,β

′
2, · · · ,β′

QJ

)′
and β̂ denote the corresponding estimator. The following result
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establishes the joint distribution of a fixed number of GVEs:

Theorem 2. Under Assumptions A1, A2, A5, B1 and B2, as G → ∞,

Σ−1/2
n

√
n
(
β̂ − β

)
d→ N (0, I) .

The proof of this result builds on Theorem 1. Because γ̂ = (γ̂ ′
1, γ̂

′
2, · · · , γ̂ ′

QJ
)′ = (IQJ

⊗H) β̂,

it follows immediately from Theorem 2 that γ̂ has covariance Ξn and the joint distribution of γ̂ is

asymptotically Gaussian.

3.1 Estimation and parameter of interest

It is natural to consider weighted averages of the estimators over all possible partitions, and we

will refer to any estimator from this class as a Weighted Group Variable Estimator (WGVE):

β̂W =

QJ∑
q=1

Wn,qβ̂q =

QJ∑
q=1

⎡⎢⎢⎢⎢⎢⎣
W θ

n,q 0 0

0 W γ
n,q 0

0 0 W δ
n,q

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
θ̂q

γ̂q

δ̂q

⎤⎥⎥⎥⎥⎥⎦ , (10)

where Wn,q are matrices of (possibly stochastic) weights that sum to the identity matrix, W θ
n,q is

a py × py matrix, W γ
n,q is a px × px matrix, and W δ

n,q is a pypx × pypx matrix. The vector β̂q is the

GVE as in (9), and (10) defines a class of instrumental variable estimators by the weighting matrix

{Wn,q, q = 1, 2, . . . , QJ}. Below, we allow for different weighting schemes. In the case of equal

weights, β̂M = Q−1
J

∑QJ

q=1 β̂q, which is defined as the Mean Group Variable Estimator (MGVE).

The WGVE is an extension of the method discussed in the previous section. In the first step,

we obtain β̂q for q = 1, 2, . . . , QJ . In the second step, we compute (10). As expected, a linear

combination of a finite number of consistent and asymptotically normal estimators is consistent

and asymptotically normal, as shown in Theorem 3 below.

The use of weights for linear combinations of estimators is not new (e.g., Pesaran 2006, Chen
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et al. 2016, Harding et al. 2020, among others). If r = 1 and mB = 1, then QJ = J −mA, and one

could setWn,q = Q−1
J Ikx = (J−mA)

−1Ikx , and define the estimator as β̂M = (J−mA)
−1

∑J−mA

q=1 β̂q,

which is similar to the common correlated effect mean group estimator of Pesaran (2006) (see also

Brown, Schmidt & Wooldridge 2021). Pesaran’s estimator averages over coefficients obtained

from individual regressions and we average over coefficients obtained from different partitions.

Moreover, the estimator (10) is similar to the ones investigated by Chen, Jacho-Chávez & Linton

(2016) and Chalfin & McCrary (2018). For instance, Example 1 in Chen, Jacho-Chávez & Linton

(2016) considers a similar instrumental variable estimator for a simultaneous equation model, and

the optimal choice of weights makes a weighted instrumental variable estimator asymptotically

equivalent to the classical 2SLS estimator. Our method might be seen as a generalization of the

estimator proposed by Chalfin & McCrary (2018), which considers the case of mB = mC = 1 and

equal weights. In addition to an estimator similar to the one defined in (9), they suggest reversing

the role of ygBq and ygCq , to then pool the estimates with the goal of improving efficiency.

Motivating example (cont.) There are QJ =
(
9−3
1

)
= 6 sets B and there is no a priori practical

guidance on selecting B. The range of GVE estimates in Figure 1 goes from -0.458 to -0.342, and

the WGVE (with weights introduced in Section 3.3) is equal to -0.396.

The estimator defined in (10) estimates

βn = (θ̄′
n,γ

′, δ̄′
n)

′, (11)

where θ̄′
n =

∑QJ

q=1 W
θ
n,qθq and δ̄′

n =
∑QJ

q=1 W
δ
n,qδq. The parameter (11) differs from the one estimated

in Section 2. However, as in the case of one subset B, the use of instrumental variables leads to

identification of the slope parameter γ and reduced form coefficients associated with the factors.

This can be seen clearly in the following example:

Example 1. Consider the simplest version of model (1), ygj = γxgj + λgfj + ugj, where J = 3

and r = 1. Assuming A = {1}, we have kx = 3 because px = py = 1. There are two partitions,
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B1 = {2} and B2 = {3}, and thus, QJ = 2, and the parameter βn = Wn,1β1 + Wn,2β2. For the

case of equal weights, we set W θ
n,q = W γ

n,q = W δ
n,q = Q−1

J and Wn,q = Q−1
J I3 =

1
2
I3. Therefore,

βn =
1

2
I3

⎡⎢⎢⎢⎢⎢⎣
f1
f2

γ

−γ f1
f2

⎤⎥⎥⎥⎥⎥⎦+
1

2
I3

⎡⎢⎢⎢⎢⎢⎣
f1
f3

γ

−γ f1
f3

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0

γ

0

⎤⎥⎥⎥⎥⎥⎦+
1

2

(
1

f2
+

1

f3

)
⎡⎢⎢⎢⎢⎢⎣

f1

0

−γf1

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0

γ

0

⎤⎥⎥⎥⎥⎥⎦+ ω

⎡⎢⎢⎢⎢⎢⎣
f1

0

−γf1

⎤⎥⎥⎥⎥⎥⎦ ,

where ω := 1
2

∑2
q=1

1
fBq

. Thus, f1 is identified up to a non-singular transformation, which requires

that factors in B1 and B2 are bounded away from zero (as implied by Assumption B2).

It is well-known that the identification of (λg) and (fj) requires at least r2 restrictions (Bai

and Ng, 2013, p. 19). Various restrictions have been imposed in the literature. For the case of

r = 1, most of them amount to
∑J

j=1 f
2
j = 1 (Bai and Ng, 2013, PC1 and PC2) or λ1 = 1 (PC3).

In Example 1, a PC3-type restriction is to set either f2 = 1 or f3 = 1. One way to think about

our approach of averaging in Example 1 is that it uses the normalization

ω =
1

QJ

QJ∑
q=1

1

fBq

= 1.

It is possible to achieve point identification of the parameters of the model if we set the first

r × r block of factors equal to the identity matrix. This is illustrated in the following example:

Example 2. A suitable choice of Wn,q in (11) is W θ
n,1 = Ipy ,

∑QJ

q=1 W
γ
n,q = Ipx , and W δ

n,1 = Ipxpy . In

this case, βn = (θ′
1,γ

′, δ′
1)

′. Furthermore, under a PC3 restriction on the factors equal to fB1 = Ir

(Bai & Ng 2013, Heaton & Solo 2012, Heckman & Scheinkman 1987, among others), the parameter

θ1 is,

θ1 =

⎡⎢⎢⎢⎢⎢⎣
f−1
B1

f1

...

f−1
B1

fmA

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
f1

...

fmA

⎤⎥⎥⎥⎥⎥⎦ .

Lastly, it is important to mention that there are alternative transformations of model parameters
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that may be of interest. For instance, if we fix Bq = B1 and q indexes the choice of instruments in

the set C, the parameter of interest is βn = (θ′
1,γ

′, δ′
1)

′, where θ1 = (θj1, j ∈ A) and θj1 = f−1
B1

fj.

The parameter can be estimated considering a weighted instrumental variable estimator (WIVE),

β̃W =
∑|C|

q=1 Wn,qβ̃q, where β̃q is similar to β̂q in (9) but it uses

Xg,1 =
[
ImA

⊗ y′
gB1

xgA ImA
⊗ h′

gB1

]
, and Zg,q =

[
ImA

⊗ y′
gCq

xgA ImA
⊗ h′

gB1

]
.

Motivating example (cont.) As in the case of the WGVE estimator, the implementation of

the WIVE is simple. In the application considered in Figure 1, the point estimate is -0.444, which

is slightly smaller than the point estimate -0.396 obtained by the WGVE estimator. Additional

results are available upon request.

In the next section, we establish conditions under which the WGVE is consistent and asymptot-

ically normal. Later in Section 3.3, we investigate the selection of optimal weights for the estimator

of the parameter γ.

3.2 Theoretical properties

Since J is fixed, so are the number of subsets QJ , and the number of proxy and instrumental

variables mB and mC . Then, the number of instrumental variables and the number of estimators

in (10) does not diverge. This is the case most relevant in the application using administrative

data presented in Section 5 and in the recent econometric literature (see Juodis & Sarafidis 2018,

2020, Norkutė et al. 2021, for examples).

To establish the large sample results of the WGVE, the weight matrix must satisfy the fol-

lowing condition B3. The condition allows the use of different weighting schemes to improve the

performance of the GVE and it is similar to the ones employed in the literature such as Pesaran

(2006) and Chen, Jacho-Chávez & Linton (2016). Assumption B3 is similar to A1 and B4 in Chen,

Jacho-Chávez & Linton (2016), and the second part of the assumption is needed in the case of
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random weights which are well approximated by a non-random sequence.

B3. The weights {Wn,q}QJ
q=1 satisfy (i)

∑QJ

q=1 Wn,q = Ikx and supn≥1

∑QJ

q=1 ‖Wn,q‖ < ∞ w.p.1.

Moreover, (ii) there exist deterministic weight matrices {W 0
n,q}QJ

q=1 satisfying
∑QJ

q=1 ‖Wn,q−W 0
n,q‖ =

op(1) and supn≥1

∑QJ

q=1 ‖W 0
n,q‖ < ∞.

Define Vn =
∑QJ

q=1

∑QJ

l=1 Wn,qΣn,qlW
′
n,l. The next result builds on Theorem 1:

Theorem 3. Under conditions A1, A2, A5, and B1-B3, as G → ∞, the WGVE defined in (10)

is consistent, i.e. β̂W − βn
p→ 0, and

V−1/2
n

√
n
(
β̂W − βn

)
d→ N (0, I) .

Thus, a WGVE is consistent and asymptotically normal. One advantage of WGVE over any

given GVE is that WGVE does not require the researcher to select a group of measurements to

proxy loadings, as in equation (3). An additional advantage of WGVE over GVE is that weights

can be chosen to gain efficiency. We now turn to these efficiency gains.

3.3 Efficiency gains from combining GVE estimators

To discuss efficiency gains, we focus on the estimation of γ, because this parameter is invariant to

q. Given a choice of px × px weight matrices W γ
n,q for q ∈ {1, · · · , QJ}, such that

∑QJ

q=1 W
γ
n,q = Ipx ,

define the WGVE for γ as

γ̂W =

QJ∑
q=1

W γ
n,qγ̂q. (12)

It follows from our previous result that (Vγ
n)

−1/2 √n (γ̂W − γ) is asymptotically Gaussian, where

Vγ
n = W γ

nΞn(W
γ
n )

′, (13)

the weight matrix W γ
n =

(
W γ

n,1,W
γ
n,2, . . . ,W

γ
n,QJ

)
, and Ξn is the covariance matrix of the joint

distribution of γ̂ = (γ̂ ′
1, γ̂

′
2, · · · , γ̂ ′

QJ
)′ obtained from Theorem 2.
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Within the class of estimators (12), we will call as optimal weights the weight matrices that

minimize (13) with respect to the weights W γ
n subject to

∑QJ

q=1 W
γ
n,q = Ipx . We are particularly

interested in comparing the variance of the resulting estimator to that of any given GVE.

To state the following result, it is convenient to write γ = Rγ, where R = (ιQJ
⊗ Ipx). Optimal

weights can be obtained from the minimum distance estimation problem with objective function:

n
(
γ̂ − γ

)′
Ξ−1

n

(
γ̂ − γ

)
= n

(
γ̂ −Rγ

)′
Ξ−1

n

(
γ̂ −Rγ

)
.

From standard results on optimal minimum distance estimation, we know that variance-minimizing

weights are given by

W γ∗
n,q =

[
R′Ξ−1

n R
]−1 [

R′Ξ−1
n

]
q
, (14)

where [R′Ξ−1
n ]q is the q-th block of the matrix R′Ξ−1

n . It follows that the estimator γ̂∗
W =∑QJ

q=1 W
γ∗
n,qγ̂q has covariance matrix,

Vγ∗
n =

QJ∑
q=1

QJ∑
l=1

W γ∗
n,qΞn,ql(W

γ∗
n,l)

′ =
[
R′Ξ−1

n R
]−1

. (15)

The following result demonstrates that the WGVE of γ can improve on GVE by averaging over

optimally chosen weights.

Theorem 4. Under the Assumptions of Theorem 3, and if Ξn is nonsingular, then the WGVE

defined in equation (12) with weights W γ∗
n,q is at least as efficient as any GVE estimator γ̂q.

The optimal weight and variance matrices can be estimated following closely Hansen & Lee

(2019) and Section 6 in Chen, Jacho-Chávez & Linton (2016). To elaborate on the implications of

Theorem 4, we now present an example that illustrates the potential gains of combining different

GVEs.

Example 3. Consider the model in Example 1. The covariance matrix of β̂W =
∑2

q=1 Wn,qβ̂q is

Vn =
∑2

q=1

∑2
l=1 Wn,qΣn,qlW

′
n,l. We set W θ

n,1 = W δ
n,1 = 1 and we assume γ = 0 and σ2

λ = 1 to
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simplify the expressions. Because Ξn in equation (14) is equal to

Ξn =
σ2
u

σ2
x

⎡⎢⎣f2
1+f2

2

f2
2

1

1
f2
1+f2

3

f2
3

⎤⎥⎦ ,

we obtain W γ∗
n,1 = f 2

2 /(f
2
2 + f 2

3 ) =: τ2 and W γ∗
n,2 = f 2

3 /(f
2
2 + f 2

3 ) =: τ3. Then, letting θ1 = f1/f2,

θ2 = f1/f3, and κ = (f 2
3 + σ2

u)/(f2f3)
2, the optimal covariance matrix of β̂∗

W is

V∗
n =

σ2
u

σ2
x

⎡⎢⎢⎢⎢⎢⎣
(1 + θ21)κσ

2
x 0 0

0 (1 + τ2θ
2
1) 0

0 0 (1 + θ21)

⎤⎥⎥⎥⎥⎥⎦ .

The variance of γ∗
W can be compared with the variance of γ̂1. Because 0 < τ2 < 1 by Assumption

B1, we obtain

[Vn,1]2,2 = var(γ̂1) = (1 + θ21)
σ2
u

σ2
x

>
(
1 + τ2θ

2
1

) σ2
u

σ2
x

= var(γ̂∗
W ) = [V∗

n]2,2.

Similarly, if we consider the GVE γ̂2 obtained from the second partition:

[Vn,2]2,2 = var(γ̂2) = (1 + θ22)
σ2
u

σ2
x

>
(
1 + τ3θ

2
2

) σ2
u

σ2
x

= var(γ̂∗
W ) = [V∗

n]2,2.

Therefore, the estimator of γ̂∗
W is optimal in the sense of achieving the smallest variance in the

class of GVE estimators, γ̂1 and γ̂2.

For the case σ2
u = σ2

x = 1 and f1 = f3 = 1, Figure 2 displays the variance of γ̂ as a function of

f2 for the two GVEs, the MGVE, and the WGVE. Recall that MGVE uses equal weights and the

WGVE uses optimal weights. The MGVE outperforms each GVE over a large range of values of

f2 but not everywhere. The WGVE with optimal weights dominates the other three estimators.

The sole exception is f2 = 1, where the variance of MGVE is equal to the variance of WGVE. This
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Figure 2: Variance of GVE, MGVE, and WGVE estimators in Example 3. GVE denotes group
variable estimator, MGVE denotes mean group variable estimator and WGVE is the weighted group
variable estimator with optimal weights.

is because, in this particular case,

var(γ̂M) =

(
1 +

f 2
2 + 1

4f 2
2

)
≥

(
1 +

1

f 2
2 + 1

)
= var(γ̂∗

W ).

4 Simulation experiments

In this section, we investigate the finite sample performance of the proposed approaches in compar-

ison to existing methods. We generate observations based on the following model used in Pesaran

(2006):

ygj = γ0 + γ1xgj,1 + γ2xgj,2 + λg,1fj,1 + ugj, (16)
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where xgj,s = ajλg,1 + bjfj,1 + cjλg,1fj,1 + εgj,s, and fj,1 = ρfj−1,1 + ηj for g = 1, 2, . . . , G and j =

−S + 1, . . . , 0, 1, . . . , J . We assume that J = 10 and the researcher is interested in γ = (γ0, γ1, γ2)
′

and (fj,1, j ∈ A) where A = {5, 6, . . . , 10}. The error term in equation (16) is distributed as

either Gaussian or t-student with 3 degrees of freedom (t3). The loading λg,1 is drawn as an

independent observation from a uniform distribution ranging from 0.5 to 3.5, and ηj is an i.i.d.

random variable distributed as uniform U [0, 1]. The error term (εgj,1, εgj,2)
′ ∼ N (0, I). Moreover,

we set the parameters of the model to generate an endogenous variable, xjg,1, and an exogenous

variable, xgj,2. The parameters are γ1 = γ2 = a1 = 1, b1 = 2, c1 = 0.5, γ0 = a2 = b2 = c2 = 0,

and ρ = 0.8. Lastly, we set S = 50 to minimize the effects of the initial values on the outcome,

f−49,1 = 1.

We focus our investigation on the estimation of the slope coefficient γ1 in equation (16). Section

3 in the online appendix reports results for the estimation of reduced form parameters. Table 1

shows the bias and root mean squared error (RMSE) of different estimators under sample sizes

G = {200, 500, 1000}. The upper panel shows results for ugj ∼ N (0, 1), and the lower panel shows

results for ugj ∼ t3. We compare our estimators to existing approaches such as the estimator for an

interactive effects model (IEE) proposed by Bai (2009) which uses PCA, the 2SLS estimator that

uses internal instrumental variables, and a 2SLS estimator that uses the LASSO (LAS) estimator

proposed by Belloni et al. (2012) in the first stage. The LAS estimator employs internal instruments

and it is implemented using the R package hdm (Chernozhukov et al. 2016).

Table 1 also shows the bias and RMSE of the new estimators. GVE denotes the group variable

estimator as in (7), MGVE denotes the mean weighted group variable estimator, and WGVE

denotes the optimally weighted group variable estimator defined in (10). The GVE estimator is

obtained considering B = {1} and the MGVE uses Q−1
J Ikx as weights. Because A = {5, 6, . . . , 10}

in all the simulations, the MGVE and WGVE estimators are obtained based on QJ =
(
J−mA

mB

)
=(

10−6
1

)
= 4 estimators. Finally, the optimal weights for WGVE are estimated following a simple

two step procedure. First, we estimate βq. Then, using residuals êg,q = yg −Xg,qβ̂q for each g and
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G IEE 2SLS LAS GVE MGVE WGVE

Model with Gaussian Errors

200 Bias 0.004 0.009 0.007 0.009 0.010 0.021
RMSE 0.029 0.058 0.058 0.058 0.040 0.044
Standard Error 0.025 0.046 0.047 0.056 0.039 0.038
Coverage Probability 0.880 0.820 0.829 0.886 0.891 0.826

500 Bias 0.002 0.002 0.001 0.002 0.001 0.006
RMSE 0.018 0.035 0.035 0.035 0.024 0.025
Standard Error 0.016 0.029 0.030 0.035 0.025 0.025
Coverage Probability 0.885 0.839 0.854 0.920 0.908 0.888

1000 Bias 0.001 0.000 0.000 0.000 0.000 0.003
RMSE 0.014 0.026 0.026 0.026 0.019 0.019
Standard Error 0.011 0.021 0.021 0.025 0.018 0.018
Coverage Probability 0.853 0.815 0.823 0.894 0.892 0.884

Model with t3 Errors

200 Bias 0.115 0.036 0.027 0.036 0.036 0.067
RMSE 0.175 0.122 0.190 0.122 0.088 0.104
Standard Error 0.041 0.082 0.099 0.105 0.074 0.065
Coverage Probability 0.467 0.757 0.781 0.841 0.823 0.692

500 Bias 0.086 0.014 0.010 0.014 0.015 0.030
RMSE 0.143 0.076 0.075 0.076 0.051 0.058
Standard Error 0.026 0.053 0.054 0.068 0.048 0.045
Coverage Probability 0.524 0.770 0.794 0.876 0.868 0.804

1000 Bias 0.079 0.008 0.006 0.008 0.006 0.015
RMSE 0.134 0.052 0.052 0.052 0.036 0.038
Standard Error 0.019 0.038 0.039 0.049 0.035 0.034
Coverage Probability 0.558 0.789 0.812 0.899 0.891 0.855

Table 1: Finite sample performance of several estimators for γ1. IEE refers to the interactive effects
estimator, 2SLS denotes the instrumental variable estimator, LAS denotes a 2SLS estimator that
uses LASSO in the first stage, GVE is the group variable estimator, MGVE the mean group variable
estimator, and WGVE is the optimally weighted group variable estimator.
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q, we obtain Ξ̂n. It is straightforward to estimate (14) as Ŵ γ∗
n,q =

[
R′Ξ̂−1

n R
]−1 [

R′Ξ̂−1
n

]
q
, where

R = (ιQJ
⊗ Ipx) = (ι4 ⊗ I3) in all simulations.

As expected, the results in Table 1 demonstrate that the IEE estimator offers excellent perfor-

mance in models with Gaussian errors, but the estimator can be biased when ugj ∼ t3. As expected,

the performance of 2SLS and LAS estimators is similar, because the number of instruments is not

large. The performance of the proposed GVEs is excellent and they offer the smallest RMSE in

the class of instrumental variables estimators for a linear panel data model. For the model with t3

errors, the GVEs offer better performance in terms of RMSE than IEE, 2SLS, and LAS.

Table 1 also reports standard errors and coverage probabilities for a nominal 90% confidence

interval for a slope parameter γ1. The coverage is constructed based on the standard error of

the estimator. GVE offers larger standard errors, in general, than the 2SLS estimator, because

it accounts for the within-cluster correlation in the reduced form equation. Moreover, also as

expected, WGVE offer significant gains in precision relative to GVE. Overall, the new proposed

approaches offer excellent performance when G > 200, and the coverage probability is close to the

target 90 percent under different distributional assumptions, in contrast to the IEE.

5 Educational Opportunity in the US

Educational attainment depends on numerous observable economic factors such as school resources

and parental income, but also on unobservable or difficult to measure factors such as teacher

quality and student motivation. We are interested in situations where student ability and teacher

quality interact, and wish to understand the impact of the latent educational quality and of the

distribution of student ability. Therefore, applications in this area present themselves as natural

test beds for our proposed methods. In this section, we illustrate the use of the proposed estimator

and investigate how the distribution of school district heterogeneity changes across states. We find

significant geographic variability of educational opportunity across the US.
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5.1 Data

We investigate educational performance at the school district level in the US using the Stanford

Education Data Archive (SEDA), which is commonly used to evaluate educational policies and

practices (Reardon 2019, Fahle et al. 2021). SEDA provides nationally comparable scores in math-

ematics and reading for over 11,000 school districts in the majority of US states, from standardized

tests administered from 3rd grade through 8th grade. SEDA also includes a range of variables

for each grade and year separately, including the percentage of non-white students by grade, the

percentage of students receiving free or reduced-price lunch, the percentage of adult population

(over 25 years of age) with a college degree or higher, and the number of students in grade. The

non-white students include the percentage of African-American, Asian-American, Native-American

and Hispanic students. For the purpose of this empirical illustration, we will use data from the

year 2018. Our final dataset includes average academic achievement from 2,033 school districts

measured by standardized test scores in mathematics and reading.

5.2 Model

Wemodel the district level test scores for middle school students using the following equation, which

also accounts for the impact of latent school-district and grade-level heterogeneity on educational

attainment using a one-factor specification:

ygj = x′
gjγ + λgfj + ugj. (17)

In our model, ygj is the average normalized test score in district g in grade j and xgj is a vector of

control variables. Here, λg is a district loading that might be associated with district educational

attainment, and the grade-level factor fj can be interpreted as measuring educational attainment

by grade j.

By including factors and loadings, we can account for unobserved grade and district character-
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Mathematics Reading
OLS IEE GVE WGVE OLS IEE GVE WGVE

Percent minority in -0.541 -0.495 -0.429 -0.396 -0.548 -0.504 -0.467 -0.435
class (0.010) (0.010) (0.031) (0.022) (0.009) (0.010) (0.024) (0.021)

Percent free or reduced -0.281 -0.441 -0.557 -0.530 -0.237 -0.374 -0.454 -0.462
lunch in class (0.013) (0.014) (0.051) (0.029) (0.012) (0.013) (0.036) (0.028)

Percent high education 1.162 0.814 0.865 0.916 1.129 0.834 0.957 0.988
in district (0.028) (0.029) (0.073) (0.050) (0.025) (0.027) (0.056) (0.047)

Logarithm of average 0.010 0.017 0.002 0.008 0.015 0.021 0.005 0.009
class enrollment (0.002) (0.002) (0.004) (0.003) (0.001) (0.001) (0.003) (0.003)

Grade 6 effect -0.057 -0.229 -0.027 -0.067 -0.119 -0.119
(0.217) (0.026) (0.163) (0.053)

Grade 7 effect -0.049 -0.884 -0.011 -0.028 -0.609 -0.040
(0.275) (0.049) (0.190) (0.052)

Grade 8 effect 0.155 0.510 0.157 0.137 0.455 0.147
(0.260) (0.045) (0.184) (0.048)

Table 2: Estimated slopes and reduced form coefficients for the factor by grade. IEE denotes Bai’s
(2009) estimator, GVE denotes the group variable estimator, and WGVE is the optimally weighted
group variable estimator. Standard errors are in parenthesis.

istics. This is important, as the set of observed covariates is limited in this data set. We can think

of district educational attainment as capturing the different district-specific but grade-invariant

factors such as additional demographic or other drivers of test scores. In contrast, grade-level

educational attainment is assumed to be constant across district but differing across grades and

may capture unobserved factors such as the inherent variation in difficulty of the material in dif-

ferent grades. Note that the term λgfj represents the interaction between average educational

performance in district g and average educational attainment in grade j. The interaction between

these latent terms allows us to account for the fact that grade specific challenges faced by students

are being addressed very differently in high and low performing districts which may exacerbate

differences in test scores across districts.

We estimate equation (17) separately by subject for grades j ∈ A = {4, 5, 6} (i.e., grades 6, 7

and 8) considering 6, 099 observations. The results are presented in Table 2. Districts are assumed

to be independent, and the error term ugj is assumed to be conditionally independent across grades

and subjects. For the consistency of the GVE and WGVE estimators, the errors can be weakly

25



dependent within district at the middle school level, but errors in the middle school and elementary

school equations are assumed to be conditionally independent.

5.3 Empirical results

We employ several estimators discussed in this paper. IEE denotes Bai’s (2009) estimator, GVE

denotes the group variable estimator, and WGVE is the optimally weighted group variable estima-

tor. OLS does not use IVs and does not cluster the standard errors and GVE uses IVs and does

cluster the standard errors as in Theorem 1. We find that district-level educational performance

is lower in districts with a higher percentage of minority students and also lower income students

who rely on free or reduced lunch programs. At the same time, district-level educational perfor-

mance is higher in districts with a more educated population. Average class size has a very small

positive effect by comparison. The impact of these district-level variables is very similar for both

subjects (Mathematics and Reading). The magnitudes of the slope coefficients are slightly higher

for the GVE and WGVE estimators compared to the IEE estimator. As anticipated, OLS tends

to produce noticeably different estimates than the other estimators that also account for latent

heterogeneity.

When computing the GVE estimates, the practitioner can get different results depending on

the chosen subset Bq. In Figure 3, we compare the impact of using different grades and/or subjects

to proxy the latent district level loading in (3) on the estimated coefficients on the demographic

explanatory variables measuring poverty, parental education, and class size. The figure presents

results for mathematics only, because the evidence for reading is similar. While the choices of

Bq do not change the qualitative interpretation of the results, the range of estimated coefficients

varies substantially and can exceed 20%. Because the WGVE estimator uses optimal weights, we

continue to see improvements on the precision of the proposed method in relation to the GVE

estimator, see Figure 1 and Table 2.

Lastly, we show how the approach can be used to estimate district loadings, which are naturally
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Figure 3: Results for the slope parameters in a model for mathematics. The shaded areas are 95%
point-wise confidence intervals. Third grade math is denoted by ‘3 math’, fourth grade math by ‘4
math’, etc. IEE denotes Bai’s (2009) estimator, GVE denotes the group variable estimator, and
WGVE is the optimally weighted group variable estimator.

of interest from a policy point of view. Using the estimates in Table 2, we obtain residuals êgj =

ygj − x′
gjγ̂

∗
W . We then apply the method of principal components with a PC3-type restriction

to identify (λ1, λ2, . . . , λG). In Figure 4, we investigate the loadings capturing the district level

heterogeneity further by displaying the distributions by state, subject to the caveats that the

consistency of the estimator requires large J , and the data available to us cannot capture the full

national distribution due to a limited number of observations in some states. Nevertheless, it is

particularly striking how wide the range of the estimated loadings is by state. In mathematics,

the worst performing school districts as measured by the magnitude of the loading λg are Grenada

(MS), Marengo (AL), Montgomery (AL), Glynn (GA) and Bryan (OK).
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Figure 4: Geographical disparities and district educational attainment.

6 Conclusions

In this paper, we present a novel solution using internally generated instruments for the estimation

of linear factor models. We propose a new class of estimators and establish large sample results.

We demonstrate that there are theoretical and practical advantages of creating weighted linear

combinations of instrumental variables estimators, which can lead to efficiency improvements.

While the proposed approach is computationally intensive and identification relies on correctly

specifying the dependence of the error term across partitions, it nevertheless leads to a simple

approach to estimating linear models. Further research may involve relaxing the identification

assumptions to more general cases and to the extension of approximate factor models.
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