Question 3: The Core of an Economy

- (a) Define the weak core of exchange economy {I, u, w} = {I, (uⁱ, wⁱ)_{i∈I}} as the set of its allocations x such that there do not exist H ⊆ I and (x̂ⁱ)_{i∈H} for which ∑_{i∈H} x̂ⁱ = ∑_{i∈H} wⁱ and uⁱ(x̂ⁱ) > uⁱ(xⁱ) for all i ∈ H. Argue that:
 - i. the core is a subset of the weak core; and
 - ii. if all preferences are continuous and strictly monotone, the core and the weak core are the same set.
- (b) Given an exchange economy {*I*, u, w}, prove the following:
 - i. If w is efficient, then it is a core allocation.
 - ii. If each u^i is strongly quasiconcave and w is efficient, then w is the only core allocation.
- (c) Consider a two-person exchange economy

$${I = {1, 2}, u = (u^1, u^2), w = (w^1, w^2)},$$

and suppose that (p, x^1, x^2) is a competitive equilibrium. Argue that if (x^1, x^2) is not in the core of the economy, then it must be Pareto inefficient.

- Answer: 1. (a) It suffices to show that the complement of the weak core is a subset of the complement of the core. Let allocation \mathbf{x} not be in the weak core of the economy. By definition, there exist $\mathcal{H} \subseteq I$ and $(\hat{x}^i)_{i\in\mathcal{H}}$ for which $\sum_{i\in\mathcal{H}} \hat{x}^i = \sum_{i\in\mathcal{H}} w^i$ and $U^i(\hat{x}^i) > U^i(x^i)$ for all $i \in \mathcal{H}$. The latter implies, obviously, $U^i(\hat{x}^i) \ge U^i(x^i)$ for all $i \in \mathcal{H}$, with strict inequality for some. But this implies that the allocation is not in the core of the economy, as needed.
 - (b) Again, it's easier to show that the complement of the core is a subset of the complement of the weak core. If x isn't in the core, there exist H⊆ I and (x̂ⁱ)_{i∈H} for which ∑_{i∈H} x̂ⁱ = ∑_{i∈H} wⁱ and Uⁱ(x̂ⁱ) ≥ Uⁱ(xⁱ) for all i ∈ H, with strict inequality for some i' ∈ H. By monotonicity and continuity of u^{i'}, we can find x̄^{i'} < x̂^{i'} such that u^{i'}(x̄^{i'}) > u^{i'}(x^{i'}). Defining, for every i ∈ H \ {i'},

$$\bar{x}^{i} = \hat{x}^{i} + \frac{1}{I-1}(\hat{x}^{i'} - \bar{x}^{i'}) > \hat{x}^{i},$$

we get, by strict monotonicity, that $u^i(\bar{x}^i) > u^i(\hat{x}^i) \ge u^i(x^i)$. By construction,

$$\sum_{i\in\mathcal{H}}\bar{x}^{i}=\bar{x}^{i'}+\sum_{i\in\mathcal{H}\setminus\{i'\}}\left[\hat{x}^{i}+\frac{1}{I-1}(\hat{x}^{i'}-\bar{x}^{i'})\right]=\sum_{i\in\mathcal{H}}\hat{x}^{i}=\sum_{i\in\mathcal{H}}\omega^{i},$$

so it follows that \mathbf{x} isn't in the weak core either.

- (a) If coalition H had an objection (xⁱ)_{i∈H}, we could construct an objection for the grand coalition, I, by simply completing the allocation with xⁱ = wⁱ for all i ∉ H.
 - (b) Suppose that **x** is another allocation in the core. By construction, the allocation constructed by letting $\hat{x}^i = \frac{1}{2}(w^i + x^i)$ for each *i* is feasible too. Since *x* is in the core, $u^i(x^i) \ge u^i(w^i)$, which implies that $u^i(\hat{x}^i) \ge u^i(w^i)$, by quasiconcavity. Since $x \ne (w^i)_{i \in I}$, there exists some

i for whom $x^i \neq w^i$. For such *i*, by strict quasiconcavity, the previous inequality is strict: $u^i(\hat{x}^i) > u^i(w^i)$.

Existence of $\hat{\mathbf{x}}$ contradicts the fact that w is Pareto efficient, though.

3. Since

$$x^i \in \arg\max_x \{u^i(x) : p \cdot x \le p \cdot w^i\}$$

for both *i*, it must be true that $u^i(x^i) \ge u^i(w^i)$. Then, since there are only two people in the economy, for (x^1, x^2) to not be in the core, it must be blocked by the grand coalition. \Box