Ph. D. Preliminary examination in Industrial Organization, July 2007

Answers to questions 1 and 2

1. (a) The extensive form is as follows

(b) Number the subgames 1 to 4 from left to right.

Subgame 1: q_{1} is chosen to maximize $\alpha \Pi_{1}\left(q_{1}, q_{2}\right)=\alpha\left(q_{1}\left(60-q_{1}-q_{2}\right)-12 q_{1}\right)$ and q_{2} is chosen to maximize $\alpha \Pi_{2}\left(q_{1}, q_{2}\right)=\alpha\left(q_{2}\left(60-q_{1}-q_{2}\right)-12 q_{2}\right)$. Solving $\frac{\partial \Pi_{1}}{\partial q_{1}}=0$ and $\frac{\partial \Pi_{2}}{\partial q_{2}}=0$ gives $q_{1}=q_{2}=16$. Player 1's payoff is $(1-\alpha) \Pi_{2}(16,16)=(1-\alpha) 256$ and the same is true for player 2.

Subgame 2: q_{1} is chosen to maximize $\alpha \Pi_{1}\left(q_{1}, q_{2}\right)=\alpha\left(q_{1}\left(60-q_{1}-q_{2}\right)-12 q_{1}\right)$ and q_{2} is chosen to maximize $\alpha R_{2}\left(q_{1}, q_{2}\right)=\alpha q_{2}\left(60-q_{1}-q_{2}\right)$. Solving $\frac{\partial \Pi_{1}}{\partial q_{1}}=0$ and $\frac{\partial R_{2}}{\partial q_{2}}=0$ gives
$q_{1}=12$ and $q_{2}=24$. Player 1's payoff is $(1-\alpha) \Pi_{1}(12,24)=(1-\alpha) 144$ and player 2's payoff is $\Pi_{2}(12,24)-\alpha R_{2}(12,24)=288-\alpha 576$.

Subgame 3: q_{1} is chosen to maximize $\alpha R_{1}\left(q_{1}, q_{2}\right)=\alpha q_{1}\left(60-q_{1}-q_{2}\right)$ and q_{2} is chosen to maximize $\alpha \Pi_{2}\left(q_{1}, q_{2}\right)=\alpha\left(q_{2}\left(60-q_{1}-q_{2}\right)-12 q_{2}\right)$. Solving $\frac{\partial R_{1}}{\partial q_{1}}=0$ and $\frac{\partial \Pi_{2}}{\partial q_{2}}=0$ gives $q_{1}=24$ and $q_{2}=12$. Player 1 's is $\Pi_{1}(24,12)-\alpha R_{1}(24,12)=288-\alpha 576$ and player 2 's payoff is $(1-\alpha) \Pi_{2}(24,12)=(1-\alpha) 144$.

Subgame 4: q_{1} is chosen to maximize $\alpha R_{1}\left(q_{1}, q_{2}\right)=\alpha q_{1}\left(60-q_{1}-q_{2}\right)$ and q_{2} is chosen to maximize $\alpha R_{2}\left(q_{1}, q_{2}\right)=\alpha q_{2}\left(60-q_{1}-q_{2}\right)$. Solving $\frac{\partial R_{1}}{\partial q_{1}}=0$ and $\frac{\partial R_{2}}{\partial q_{2}}=0$ gives $q_{1}=20$ and $q_{2}=20$. Player 1's is $\Pi_{1}(20,20)-\alpha R_{1}(20,20)=160-\alpha 400$.

Thus the game reduces to:

Now, $(1-\alpha) 256 \leq 288-\alpha 576$ if and only if $\alpha \leq \frac{1}{10}$ and $(1-\alpha) 144 \leq 160-\alpha 400$ if and only if $\alpha \leq \frac{1}{16}$. Thus,

Case 1: $\alpha<\frac{1}{16}$. Then 2 will offer a revenue contract at both nodes and there is a unique subgameperfect equilibrium where both offer a revenue contract.

Case 2: $\alpha=\frac{1}{16}$. Then 2 offers a revenue contract if 1 offered a profit contract and is indifferent between revenue and profit contracts if 2 offered a revenue contract. There are three subgameperfect equilibria: $(P, R R),(R, R R)$ and $(R, R P)$.

Case 3: $\frac{1}{16}<\alpha<\frac{1}{10}$. In this case 2 offers a revenue contract if 1 offers a profit contract and a profit contract if 1 offers a revenue contract. There is a unique subgame-perfect equilibrium: $(\mathrm{R}$, P).

Case 4: $\alpha=\frac{1}{10}$. In this case 2 offers a profit contract if 1 offers a revenue contract and is indifferent between profit and revenue contracts if 1 offered a profit contract. There are two subgame-perfect equilibria: (P, P) and (R, P).

Case 5: $\alpha>\frac{1}{10}$. In this case 2 offers a profit contract at both nodes and there is a unique subgameperfect equilibrium where both offer a profit contract: (P, P).
(c) When $\alpha=\frac{1}{20}$ we are in case 1 . The reduced game is

The subgame-perfect equilibrium is (R, RR) with payoffs of 140 for each player.
(d) This is an instance of the advantages of delegating choices to somebody with different incentives from your own. A revenue-maximizing manager expands output relative to a profit-maximizing manager and the reaction of the competitor is to reduce output (output levels are strategic substitutes). However, this situation ends up being a prisoners' dilemma situation: both player would be better off if they were to run the firms themselves.
2. If the merger is allowed, HAL-Entil is a single firm with unit cost of production equal to 3 like HAL.

The Cournot equilibrium is therefore:

$$
\mathrm{q}_{1}=\mathrm{q}_{2}=\frac{997}{6}=166.17, \quad \mathrm{Q}=\frac{1994}{6} \cong 332.33, \quad \mathrm{P}=\frac{1006}{3} \cong 335.33
$$

If the merger is not allowed, let w be the price that Entil charges HAL. Then the latter has a unit cost of ($1+\mathrm{w}$). The Cournot equilibrium is given by:

$$
\mathrm{q}_{1}=\frac{1001-2 w}{6}, \quad \mathrm{q}_{2}=\frac{995+w}{6}, \quad \mathrm{Q}=\frac{1996-w}{6}, \quad \mathrm{P}=\frac{1004+w}{3}
$$

Entil will choose w to maximize its profits given by $(\mathrm{w}-2) \frac{1001-2 w}{6}$. Thus will choose

$$
\mathrm{w}=\frac{1005}{4}=251.25 .
$$

The corresponding quantity and output will be (substituting in the above formulas):

$$
\mathrm{Q}=\frac{6979}{24} \cong 290.79, \quad \mathrm{P}=\frac{5021}{12} \cong 418.41 .
$$

Since, by hypothesis, the government only cares about the welfare of consumers, the merger should be allowed because it will bring about a reduction in the price.

