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Abstract

Perturbed utility functions—the sum of expected utility and a non-linear perturbation

function—provide a simple and tractable way to model various sorts of stochastic choice.

We provide two easily understood conditions each of which characterizes this representa-

tion: One condition generalizes the acyclicity condition used in revealed preference theory,

and the other generalizes Luce’s IIA condition. We relate the discrimination or selectivity

of choice rules to properties of their associated perturbations, both across different agents

and across decision problems. We also show that these representations correspond to a

form of ambiguity-averse preferences for an agent who is uncertain about her true utility.
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1 Introduction

Deterministic theories of choice cannot accommodate the fact that observed choices in many

settings seem to be stochastic. This raises the question of the extent to which stochastic

choice follows a consistent principle that can be given a simple theoretical foundation. Here we

provide conditions under which stochastic choice corresponds to the maximization of the sum

of expected utility and a perturbation function

P (A) = arg max
p∈∆(A)

∑
z∈A

u(z)p(z)− c(p(z)) (1)

where P (A) is the probability distribution of choices from the set A, u is the utility function of

the agent, and c is a convex perturbation function that may reward the agent for randomizing;

we call this an Additive Perturbed Utility (APU) representation. Such perturbed utility func-

tions and their variants have been previously used by e.g. Harsanyi (1973b), Machina (1985),

Rosenthal (1989), Clark (1990), Mattsson and Weibull (2002), and Swait and Marley (2013).1

Because we want to apply the perturbed-utility representation to choice sets A of varying size,

we adopt an additive form for the perturbation function, as opposed to allowing general func-

tions on ∆(A). The additive specification has content because we require the cost function c to

depend only on p. At the other extreme, additivity is vacuous if we allow c to depend on A and

z as well as p(z); we mention some intermediate cases in Section 4.

In contrast to past work on non-linear perturbed utility, we take a revealed preference

approach: we suppose that the analyst observes the agent’s choice probabilities from some (but

not necessarily all) menus, and show that various restrictions on the probabilities correspond

to particular forms of the perturbation function. In particular, we relate restrictions on the

perturbation function to whether the agent’s choices satisfy various sorts of internal consistency

conditions. We argue that the perturbation-function approach provides a simple and tractable

1Perturbed utility has also been used in the theory of learning in games. Fudenberg and Levine (1995) show
how this leads to ”stochastic fictitious play,” and generates Hannan-consistent choice, meaning that its long-run
average payoff is at least as good as the best response to the time average of the moves of Nature and/or
other players (Hannan, 1957). Hofbauer and Sandholm (2002), Benaim, Hofbauer, and Hopkins (2009), and
Fudenberg and Takahashi (2011) use perturbed utility to construct Lyapunov functions for stochastic fictitious
play, and van Damme and Weibull (2002) study perturbed utility in an evolutionary model.
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way to model stochastic choice, and that it helps us organize the empirical evidence and evaluate

how much it pushes the boundaries of “rational” behavior.

We develop two alternative conditions that characterize the APU representation. The first

condition, Acyclicity, extends the Strong Axiom of Revealed Preference to stochastic choice.

Acyclicity implies that P (x|A) ≥ P (y|A) if and only if P (x|B) ≥ P (y|B), so that the observed

choice probabilities P induce an ordinal ranking of the items. It also implies that the choice

probabilities induce an ordinal ranking of the menus: menu A is weaker than menu B if for

any x ∈ A ∩ B, P (x|A) ≥ P (x|B). Acyclicity has more bite than these two implications: It

also ensures that the rankings on items and on menus “agree” with each other. Our second

characterization of APU, Ordinal IIA, requires that the observed choice probabilities can be

rescaled to satisfy Luce (1959)’s IIA condition. Either of these conditions implies that the

observed choice data is consistent with APU. To pin down the sense in which the representation

is unique, we assume that the choice data is “rich” and satisfy a continuity property.

The most commonly used cost function in the literature is the entropy function c(q) =

ηq log q. This cost function generates logistic choice, and so implies that the choice probabilities

satisfy Luce’s IIA, which requires that ratio of the choice probabilities of x and y is the same in

any menu that contains both of them. The more general cost functions allowed in APU let the

model describe a broader range of behavior, and permit tractable conditions that can be used to

organize alternative classes of choice rules. In addition, the uniqueness of the representation lets

us relate the discrimination or selectivity of choice rules to properties of their associated cost

functions, both across different agents and across decision problems. One focus here is on how

the selectivity of a rule—that is, the weight it places on more frequently chosen items—varies

with the size and attractiveness of the menu.

One interpretation of representation (1) is that agents facing a decision problem randomize

to maximize their non-EU preferences on lotteries, as in Machina (1985);2 Recent experimental

evidence (Agranov and Ortoleva, 2015; Dwenger, Kubler, and Weizsacker, 2014) indicates that

stochastic choice sometimes reflects deliberate randomization by subjects, rather than random

2Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella (2013) also study randomization generated by nonlinear
preferences over lotteries; they use a subclass of the non-EU preferences studied by Cerreia-Vioglio, Dillenberger,
and Ortoleva (forthcoming).
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variation in their expected utility functions. In Section 5.1 we show that such preference

for randomization may arise due to uncertainty about the true utility function. Specifically,

we show that the perturbed-utility objective function corresponds to a game in which the

agent has a form of variational preferences and so randomizes to guard against moves by a

malevolent Nature. Another interpretation is that stochastic choice arises due to inattention

or implementation costs: It may be costly to take care to implement the desired choice, so that

the agent trades off the probability of errors against the cost of avoiding them, as assumed by

van Damme (1991) and Mattsson and Weibull (2002).3

Acyclicity can be weakened to Menu Acyclicity, which implies that menus can be ordered

by weakness. An alternative relaxation is Item Acyclicity, which implies that items can be

ordered by their desirability. In the setting of deterministic choice, these two conditions are

each equivalent to Acylicity, and are also equivalent to Richter’s (1966) congruence axiom,

which extends the Strong Axiom of Revealed Preference to settings where data is incomplete

in the sense that only some menus are observed.

The most familiar stochastic choice model in economics is random utility (RU) (Thurstone,

1927; Marschak, 1959; Harsanyi, 1973a; McFadden, 1973) which supposes that the agent’s

choice maximizes a utility function that is subject to random shocks. We note that, in contrast

to existing characterizations of RU, which impose conditions on how adding items to a menu

changes the difference between choice probabilities (Falmagne, 1978), or the ratio of choice

probabilities (Luce, 1959), we characterize perturbed utility with axioms that rely only on

pairwise ordinal comparisons of the choice probabilities.4 APU rules out some RU models, even

some with i.i.d. shocks, but also allows for choice rules that do not admit a RU representation,

so the two classes of stochastic choice rules are not nested, though their intersection is non-

empty as it includes logistic choice.

RU implies that the agent is never made worse off when items are added to a choice set, which

seems counterintuitive in some situations. One advantage of the perturbed utility approach that

3See Weibull, Mattsson, and Voorneveld (2007) for an alternative approach in which the agent pays costs to
improve signal precision. None of these three papers derives the functional forms from observed behavior.

4Hofbauer and Sandholm (2002) show that with known utility functions and a fixed menu of alternatives,
any RU that satisfies a smoothness condition has a convex perturbation representation. In our setting, the
analyst does not know the utility function, and in addition we consider choices from menus of varying size.

4



we take here is that it can accommodate both cases where the agent prefers larger menus and

those where she does not. Of course, purely static choice data (which is what we consider

here) is not enough to reveal whether the agent prefers larger or smaller menus. Fudenberg and

Strzalecki (forthcoming) use cost functions to address this in the special case in which choice

satisfies Luce’s IIA axiom so that choice is logistic; the results in this paper may help extend

the analysis of dynamic stochastic choice to more general choice rules.

Various recent papers consider extensions of RU. Manzini and Mariotti (forthcoming) and

Aguiar (2015) study agents who only pay attention to a random subset of each menu; their main

model is a special case of RU. Echenique, Saito, and Tserenjigmid (2014) consider an agent with

a deterministic priority order who uses logistic choice on the perceived items. Gul, Natenzon,

and Pesendorfer (forthcoming) introduce “attribute rules” which are related to nested logit.

Although we do use a richness condition to pin down the sense in which the APU represen-

tation is unique, our characterization results (Theorems 1 and 3) do not require it, and apply

when choice is observed for a subset of the possible menus, as in the work of e.g. Afriat (1967)

and Richter (1966) on revealed preference or the work of Gilboa (1990), Gilboa and Monderer

(1992), and Fishburn (1992) on RU when only binary menus are observed.5 As observed by

de Clippel and Rozen (2014), in some models of choice it is possible for limited data to be

consistent with the characterizing axioms even when any specification of choices outside of A

would lead to a violation of those axioms. Our results imply that this problem does not arise

here.

2 Additive Perturbed Utility

Let Z be a set of items (consequences or prizes). To begin we will assume that Z is finite; this

restriction is relaxed in Section 2.3. A menu is a nonempty subset of Z; we assume menus are

finite whether Z is or not. Let A be the set of menus for which the choice probabilities of the

agent have been observed; without loss of generality we assume that every z ∈ Z appears in

at least one menu. We allow for the available choice data to be limited, i.e., the collection A
5See also Reny (forthcoming), who extends Afriat’s result to infinite data sets, and Kubler and Wei (2014)

and Echenique and Saito (forthcoming) who study revealed preference in the demand for financial assets.
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need not include every non-empty subset of Z. We consider a stochastic choice rule P that

maps each menu A ∈ A to a probability distribution on its elements. Formally, a stochastic

choice rule is a mapping P that assigns a measure P (A) ∈ ∆(A) to each menu A ∈ A. We

write P (z|A) to denote the probability that item z is chosen from the menu A. To relate the

observed choice probabilities to the form of the cost function, we will impose various sorts of

consistency conditions on P .

To facilitate the exposition, we first consider the case where all probabilities are positive.

We relax this assumption in Section 4, where we extend our model to include deterministic

choice, and show how our conditions generalize the strong axiom of revealed preference.

Definition 1. P satisfies Positivity if P (z|A) is strictly positive for each A ∈ A and z ∈ A.

As noted by McFadden (1973), a zero probability is empirically indistinguishable from a

positive but small probability. In dynamic settings, Positivity can also be motivated by the

fact that no deterministic rule can be Hannan (or “universally”) consistent (Hannan, 1957;

Blackwell, 1956).

We say that a function c is a cost function if c : [0, 1]→ R ∪ {∞} is strictly convex and C1

over (0, 1), and limq→0 c
′(q) = −∞.

Definition 2 (APU). An APU representation has the form

P (A) = arg max
p∈∆(A)

∑
z∈A

[
u(z)p(z)− c(p(z))

]
,

for some utility function u : Z → R and cost function c.

As we show in Section 5.1, perturbed utilities of this sort can arise from the agent’s ambiguity

about the true utility of the various choices.

Perhaps the most familiar stochastic choice rule is logit/logistic choice, also known as the

Luce rule, which is given by P (z|A) = exp(ηu(z))/
∑

z′∈A exp(ηu(z′)); as is well known, this

choice rule is generated by additive perturbed utility with cost c(p) = η−1p log p.6 More gener-

ally, Theorem 2 shows that logit choice is characterized by c(p) = αp ln p+γp+δ. As is also well

known, this form of APU is observationally equivalent to a random utility representation where

6See Section 3.6 in Anderson, de Palma, and Thisse (1992).
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the additive shocks are i.i.d. Gumbel with variance η7; we discuss the relationship between

APU and random utility in Section 5. Other classes of cost functions in the literature include

the logarithmic form used by Harsanyi (1973b) c(p) = −η log(p) and the quadratic perturbation

c(p) = ηp2 implicitly assumed by Rosenthal (1989).8

As far as we know, logistic choice is the only sort of APU whose revealed choice implications

have already been characterized: The Luce rule is equivalent to the following “IIA” condition

if choice probabilities are strictly positive and a sufficiently rich set of menus is observed.9

Definition 3. P satisfies IIA if for all A,B ∈ A with x, y ∈ A ∩B

P (x|A)

P (y|A)
=
P (x|B)

P (y|B)

2.1 Characterization of the model

In this section we discuss two conditions, each of which characterizes APU. The first condition,

called Acyclicity is an extension of SARP in the stochastic setting (as we will see in Section 4),

and the second condition generalizes IIA. In reading it, remember that P (x|A) is only defined

for x ∈ A.

Definition 4. P satisfies Acyclicity if for any integer n and any bijections f, g : {1, ..., n} →

{1, ..., n},

P (x1|A1) > P (xf(1)|Ag(1)), P (xk|Ak) ≥ P (xf(k)|Ag(k)) for 1 < k < n

implies P (xn|An) < P (xf(n)|Ag(n))

Although Acyclicity rules out cycles of any length, the condition can be checked on any

given Z and choice data P in a finite number of steps.

To understand Acyclicity, consider a few of its implications. First, note that Acyclicity

implies that for all x, y ∈ A ∩ B we have P (x|A) ≥ P (y|A) if and only if P (x|B) ≥ P (y|B).

7This was first shown by E. Holman and A. A. J. Marley (Luce and Suppes, 1965).
8See Voorneveld (2006) for a more detailed analysis on this concept in games.
9Luce (1959) assumed choice data at every menu is observable, but it is enough to have all menus with size

2 or 3, or have Z ∈ A.
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Thus, P induces an ordinal ranking of all items in Z; and moreover that ranking is preserved

in every menu (though the particular numerical values of the likelihoods may change and

their ratios do not have to be preserved). As it will become apparent shortly, this ranking

is represented by the utility function u; it implies that the agent choice probabilities do not

reverse due to “menu effects.”

Second, note that Acyclicity implies that for all x, y ∈ A ∩ B we have P (x|A) ≥ P (x|B)

if and only if P (y|A) ≥ P (y|B). Thus, P induces an ordinal ranking of all menus in A. One

interpretation of P (x|A) ≥ P (x|B) is that menu A is weaker than menu B in the sense that

its items compete less with x than items in B. As we will show, this ranking is represented by

the Lagrange multiplier in the maximization problem of the agent.

Acyclicity has more bite than the two implications noted above. Intuitively, it ensures that

the rankings on items and on menus “agree” with each other. For example take any menus

A,B ∈ A and items x, y ∈ A \ B. Then Acyclicity implies that P (x|A) ≥ P (y|A) iff B ∪ {y}

is weaker than B ∪ {x}.10 Acyclicity is related to the cancellation condition used in work on

multiattribute decision theory (Scott, 1964; Tversky, 1964), but differs in a few key ways. Most

notably, the choice domains in that literature have a product structure, while in our case P (x|A)

is only defined if x ∈ A, and our choice data needs to fit the restriction
∑

z∈A P (z|A) = 1.

Our second characterization of APU generalizes the IIA condition that is known to charac-

terize the entropy model.

Definition 5. P satisfies Ordinal IIA if for some continuous and monotone f : [0, 1] → R+ ∪

{∞} with f(0) = 0 such that
f(P (x|A))

f(P (y|A))
=
f(P (x|B))

f(P (y|B))

for each menu A,B ∈ A and x, y ∈ A ∩B.

Ordinal IIA requires that probabilities can be rescaled so that the rescaled choice probability

ratios are the same in every menu. Ordinal IIA reduces to IIA under f(q) = q, which implies

that the cost function is ηq log(q) for some η > 0, and thus that cost is proportional to the

10To see “if”, note that P (z|B∪{y}) ≥ P (z|B∪{x}) for all z ∈ B, which implies P (x|B∪{x}) ≥ P (y|B∪{y}).
Thus P (y|A) > P (x|A) violates Acyclictiy. To prove the “only if”, suppose to the contrary that P (z|B∪{x}) >
P (z|B ∪ {y}) for some z ∈ B. By Acyclicity, P (z′|B ∪ {x}) > P (z′|B ∪ {y}) for all z′ ∈ B, which implies
P (y|B ∪ {y}) > P (x|B ∪ {x}). These and P (x|A) ≥ P (y|A) lead to a cycle.
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negative of the entropy function. If instead f(q) = exp(−1
q
), the cost is proportional to − log q

as in Harsanyi (1973b). When Z is finite it is without loss of generality to suppose that f

takes the form of a “probability distortion” function, i.e., that f(1) = 1 so that f maps [0,1] to

[0,1].11

Theorem 1. Suppose that Positivity holds and A contains all menus with size 2 and 3. Then

the following conditions are equivalent

1. P satisfies Acyclicity

2. P satisfies Ordinal IIA

3. P is represented by APU

The next section provides some intuition and a proof sketch of both equivalences. The

assumption that A includes all menus of sizes 2 and 3 is not needed for the equivalence of

acylclicity and APU, we include it here for expositional simplicity.

2.2 Proof Sketch

To study the restrictions that APU places on observed choice probabilities, we first analyze the

agent’s maximization problem.

Definition 6. A utility function u, a cost function c, and a function λ : A → R satisfy the

first order conditions (FOC) for P iff

u(x) + λ(A) = c′(P (x|A)) (2)

Here λ(A) is the Lagrange multiplier on the constraint that the choice probabilities from

menu A sum up to one. Since c′ is monotone, FOC holds if and only if P has a separable

representation in the following sense:

11This follows from the fact that the data only pins down the value of f at a finite number of points in (0, 1).
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Definition 7. u : Z → R and λ : A → R are a separable representation of P if and only if

u(x) + λ(A) > u(y) + λ(B) iff P (x|A) > P (y|B) (3)

Lemma 1. Assume Positivity holds. Then the following conditions are equivalent.

(a) There exists (u, c) such that P has an APU representation with (u, c)

(b) There exists (u, c, λ) such that P satisfies the FOC with (u, c, λ)

(c) There exists (u, λ) such that P has a separable representation with (u, λ).

We omit the proof of this lemma, which follows the same lines as that of Lemma 2 in the

Appendix, but the intuition for the result is easy to explain: The equivalence of APU and the

FOC follows from the Kuhn-Tucker theorem. That the FOC implies a separable representation

is straightforward from the strict monotonicity of c′. To show the converse, we use a variant

of the usual ordinal uniqueness argument to show that if P has a separable representation

(u, λ), then there is a strictly increasing and continuous function g : (0, 1) → R that satisfies

g(P (x|A)) = u(x) + λ(A), and limq→0 g(q) = −∞. We then define c(p) :=
∫ p

1
2
g(q)dq, and it is

immediate that (u, c) satisfies the first order conditions.

With the lemma in hand, we prove the equivalence of Acyclicity and APU in Theorem 1

by demonstrating that Acyclicity is equivalent to the separability property (property (c)). It is

easy to show that Acyclicity is necessary: if there were both a separable representation (u, λ)

and cycle, then along the cycle we would have u(xi) + λ(Ai) ≥ u(yi) + λ(Bi) for all i with at

least one strict. Summing over i yields a contradiction because of the permutation property.

The proof that Acyclicity is sufficient for (c) formulates the existence of a cycle as a system of

linear inequalities, and obtains the desired conclusion from a version of Farkas’ lemma.12 This

linear programming argument also shows that Acyclicity can be checked in a finite number of

steps.13

12Echenique and Saito (forthcoming) use a related result in their analysis of deterministic portfolio choice. A
key technical difference is that their analog of our acyclicity condition imposes constrains on the products of
various prices, while our conditions are purely ordinal.

13See e.g. Kraft, Pratt, and Seidenberg (1959), who also note that when a solution to a linear system with
rational coefficients exists in the reals, there is also a solution in the rational number.
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To prove the equivalence of Ordinal IIA and APU in Theorem 1, we show that Ordinal IIA

is equivalent to the FOC (property (b)). To see why this is true, note that the FOC implies

that for each x, y ∈ A ∩B

c′(P (x|A))− c′(P (y|A)) = c′(P (x|B))− c′(P (y|B))

Define the strictly increasing function f : (0, 1) → R+ by f(q) := exp(c′(q)) to obtain Ordinal

IIA. For the converse, we define c′(q) := log(f(q)) and show that c(q) =
∫ q

1
2
c′(t)dt is indeed

a cost function. We then define u(z) := c′(P (z|{x, z})) − c′(P (x|{x, z})), where x ∈ Z is an

arbitrary fixed element with u(x) := 0. Proving that (b) holds is now a matter of substituting

these definitions into the Ordinal IIA condition.

2.3 Uniqueness

For an arbitrary set of items and menus, the APU representation may not be unique, but

uniqueness obtains when the range of observed behavior is rich enough.14 Intuitively, under

APU, the incentive of an agent depends only on the payoff differences u(x) − u(y) between

items in the menu; to identify the cost function we need to be able to vary this utility difference

freely.15 To allow for arbitrary utility differences, we consider an infinite set Z, but we maintain

the assumption that each menu is a finite set; formally, let A be the collection of all finite,

nonempty subsets of Z. We observe a stochastic choice function P defined on A. When Z

is infinite, APU is still characterized by Positivity and Ordinal IIA. Positivity and Acyclicity

characterize APU with under additional technical assumptions of Richness and Continuity.

Definition 8. P satisfies Richness if for any x ∈ Z and any p, q ∈ (0, 1) s.t. p + q ≤ 1 there

exist y, z ∈ Z (not necessarily distinct) such that P (x|{x, y, z}) = p and P (y|{x, y, z}) = q.

Richness implies that the range of the utility function u equals R.

Definition 9. P satisfies Continuity if Z is a separable and connected metric space and for

14This is also the case for other models of stochastic choice, such as random utility, see, e.g., Fishburn (1998).
Stronger uniqueness results can be obtained when items are lotteries, see, e.g., Gul and Pesendorfer (2006).

15A similar situation arises for variational preferences of Maccheroni, Marinacci, and Rustichini (2006); to
obtain uniqueness, they impose an additional axiom that guarantees that the range of u is rich enough.
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any menu {x1, ..., xm} and sequences of items with limn→∞ x
i
n = xi for each i = 1, 2, ...,m,

lim
n→∞

P (xin|{x1
n, ..., x

m
n }) = P (xi|{x1, ..., xm}),∀i = 1, ...,m.

Continuity implies that the utility function u is continuous.

Theorem 2. Suppose that Positivity and Richness hold.

1. P satisfies Ordinal IIA if and only if there is an APU representation of P .

2. P satisfies Acyclicity and Continuity if and only if there is an APU representation of P

with continuous u

Moreover, if (u, c) and (û, ĉ) represent the same APU P , then there exist constants α >

0, β, γ, δ ∈ R such that û = αu+ β and ĉ(p) = αc(p) + γp+ δ for all p ∈ (0, 1).

The utility function u is unique up to positive affine transformations. Note that u and c are

expressed in the same units; that is why multiplying u by a constant α requires multiplying c

by the same α. Since the absolute level of the cost function does not matter, we are free to shift

it by constants β, δ without changing behavior. Finally, since on each menu the probabilities

sum to 1 the term γp becomes a constant and similarly does not affect choice.

To prove this result, we exploit the fact that under Positivity, Additive Perturbed Utility

can be seen as an extension of the “Fechnerian” model of stochastic choice from binary to

general menus. This model, which is also called the “constant utility model,” was studied and

axiomatized by Davidson and Marschak (1959), Debreu (1958), Block and Marschak (1960),

and Scott (1964) among others.

Definition 10. A stochastic choice rule P on binary menus has a Fechnerian representation

if there exist a utility function u : Z → R and a strictly increasing transformation function g

such that P (a|{a, b}) = g(u(a)− u(b)).

Proposition 1. Suppose that P is defined on binary menus and satisfies Positivity and either

Z is finite or Richness and Continuity hold. Then P satisfies Acyclicity iff P has a Fechnerian

representation.16

16When P is defined on binary menus only and Z is infinite, Acyclicity may not be strong enough to imply

12



3 Monotone Discrimination

With the uniqueness result of Theorem 2 in hand, we can relate the discrimination or selectivity

of choice rules to to properties of their associated cost functions. Just as with measures of risk

aversion, we can do this both by comparing the behavior of different agents and by examining

how the behavior of a given agent varies across decision problems.

3.1 Comparing Choice Rules

In this section we consider a pair of choice rules P1 and P2 that are represented by APUs with

common utility function u, and define rankings of their selectiveness in the sense of choosing

better options more often. These ranking generalize the effect of multiplying the cost function

by a positive number.17 We begin by comparing P1 and P2 at binary menus.

Definition 11. P1 is more pairwise-selective than P2 if P1(x|{x, y}) ≥ P2(x|{x, y}) whenever

P2(x|{x, y}) ≥ P2(y|{x, y}).

Proposition 2. Assume that Richness holds for both P1 and P2. For each i = 1, 2, let Pi be

represented by APU (u, ci), then P1 is more pairwise-selective than P2 if and only if c′1(q) −

c′1(1− q) ≤ c′2(q)− c′2(1− q) for all q ∈ (1/2, 1).

Note that when costs are twice differentiable the condition in Proposition is equivalent

to
∫ q

1−q c
′′
1(p)dp ≤

∫ q
1−q c

′′
2(p)dp for all q ∈ (1/2, 1), which is implied by c′′1(q) ≤ c′′2(q) for all

q ∈ (0, 1). For the logit case, ci(q) = ηiq log q, this is equivalent to η1 ≤ η2. To characterize all

of the implications of c′′1 ≤ c′′2, we need to look at non-binary menus, as in the following.

Definition 12. P1 is more selective than P2 if, for any x, x′, y, zi, z
′
i, i = 1, 2, P1(x′|{x′, y, z′1}) ≥

P2(x′|{x′, y, z′2}) holds whenever

Pi(y|{x, y, zi}) = Pi(y|{x′, y, z′i}), P1(x|{x, y, z1}) = P2(x|{x, y, z2}), Pi(x
′|{x, x′}) > 1

2

an APU representation, though the converse is always true and both directions are true on any finite Z.
17For example, in the literature on learning and evolutionary games, an analyst varies perturbation levels

with a fixed utility function to analyze long-run payoffs and the dynamic stability of equilibria (Fudenberg and
Levine, 1995; Benaim and Hirsch, 1999; Kreindler and Young, 2013), and in the empirical application of quantal
response equilibrium (McKelvey and Palfrey, 1995) the logit functional form is held fixed and the scale of the
perturbation is estimated.
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for each i = 1, 2.

To understand this condition, here we focus on a situation where (i) {x, y, zi} and {x′, y, z′i}

have the same menu strength under Pi, i = 1, 2, (ii) x′ is better than x. If P1 is more selective

than P2, then P1(x′|{x′, y, z′1})− P1(x|{x, y, z1}) ≥ P2(x′|{x′, y, z′2})− P2(x|{x, y, z2}).

Proposition 3. Assume Continuity and Richness. For each i = 1, 2, let Pi be represented by

APU (u, ci), where ci is C2. Then P1 is more selective than P2 if and only if c′′1(q) ≤ c′′2(q) for

all q ∈ (0, 1).

3.2 Decreasing Selectivity

We now use APU to model the idea that the agent has limited discrimination. Recall that IIA

(corresponding to logit choice and the entropy cost function) implies that the choice ratio of x

and y in the pairwise choice problem {x, y} is the same as it is in the grand set Z. If the agent

has limited cognitive resources to implement her choices, we might expect that the agent will

be more careful in setting the probabilities of x and y when they are both more likely to be

chosen, so that there will be more discrimination in weaker menus.18 In other words, we expect

the following condition:

Definition 13. P satisfies Decreasing Selectivity if it satisfies Positivity, and for all x, y ∈ A∩B

if P (x|A) ≥ P (x|B) and P (x|A) > P (y|A), then

P (x|A)

P (y|A)
≥ P (x|B)

P (y|B)
.

Limited Discrimination says that choices from stronger menus are more uniform than choices

from weaker menus. As we show in Section 4, A ⊆ B implies P (x|A) ≥ P (x|B) under APU,

so that the axiom suggests that choice probabilities become flatter as we expand a menu. Note

that given the FOCs of an APU, we can express the choice probability ratios as

P (x|A)

P (y|A)
=
c′−1(u(x) + λ(A))

c′−1(u(y) + λ(A))
. (4)

18In a deterministic choice setting Frick (2013) extends Luce’s (1956) model of utility discrimination to capture
the idea that items of similar utility are harder to distinguish in larger menus.
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If log c′−1 is convex then the right hand side of (4) is increasing in λ. As the λ of the weaker

menu A is higher than that of B, Limited Discrimination holds, leading to the following result.

Proposition 4. Suppose that P is an APU with a utility function u and cost function c. Let

h = log(c′−1). If h is convex, then P satisfies Limited Discrimination.

In many setting there are many duplicates or near-duplicate choices, so that menu sizes

do not have a natural bound. This motivates the study of choice in large menus. In such

menus, many items will be chosen with small probability, which leads us to study the ratio of

choice probabilities of two items that are each rarely chosen. Specifically, consider a collection

of menus An such that x, y ∈ An for each n and let pn := P (x|An) + P (y|An). Proposition 4

implies that for a convex h the ratio P (x|An)
/
P (y|An) is monotone in pn; that is, the worse

the items x and y are compared to the remainder of An, the flatter their choice ratio. We now

investigate what happens in the limit.

Definition 14. P satisfies Asymptotic Non-Selectivity if it satisfies Positivity, and for any

sequence An such that x, y ∈ An if P (x|An)→ 0, P (y|An)→ 0, then P (x|An)/P (y|An)→ 1.

From formula (4), asymptotic non-discrimination can be expressed as

c′−1(u(x) + λ(An))

c′−1(u(y) + λ(An))
→ 1.

For this to hold, the function h must flatten out asymptotically as its argument u(x)− λ(An)

becomes extremely low. This is formalized by the next proposition.

Proposition 5. Suppose that P is an APU with a utility function u and cost function c. Let

h = log(c′−1). If for all t the function h satisfies lims→∞[h(t− s)−h(−s)] = 0, then P satisfies

Asymptotic Non-Discrimination. The converse is true under Richness and Continuity.

Example 1. A particular class of cost functions leading to limited discrimination and asymp-

totic non-discrimination is the logarithmic form c(q) = −η log(q). The function h is h(w) =

log(− η
w

), defined on (−∞,−η), which is strictly convex. This also satisfies the condition for

Proposition 5, because h(t− s)− h(−s) = log( s
s−t)→ 0 as s→∞. As an illustration, consider
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menus of the form An = {x, y1, ..., yn} where u(x) = 1 and u(yi) = 0 for each i. Choice prob-

abilities under η = 1 are P (x|An) = 1
2

(
−n+

√
4 + n2

)
, P (yi|An) = n−1[1 − P (x|An)]. The

choice probability ratio P (x|An)
P (y1|An)

is decreasing in n and approaches to 1 as n→∞. N

4 Beyond Positivity

So far we have assumed Positivity to simplify the exposition; however, our characterization holds

more generally. This makes it possible to accommodate models that allow zero probabilities,

such as Rosenthal (1989), and to cover deterministic choice data as a special case. In this

section we consider weak APU, which takes the same form as APU except that limp→0 c
′(p) is

not required. Formally, a function c is a weak cost function if c : [0, 1] → R ∪ {∞} is strictly

convex and C1 over (0, 1).

Definition 15 (Weak APU). An weak APU representation has the form

P (A) = arg max
p∈∆(A)

∑
z∈A

[
u(z)p(z)− c(p(z))

]
,

for some utility function u : Z → R and weak cost function c.

We first note that Acyclicity no longer characterizes weak APU without Positivity. Let

u(x) > u(y) > u(z), and suppose that c is sufficiently small so that the agent always picks the

best item with probability 1, i.e., P (x|{x, y, z}) = P (x|{x, y}) = P (x|{x, z}) = P (y|{y, z}) = 1.

This violates Acyclicity because P (y|{y, z}) > P (z|{y, z}) and P (z|{x, y, z}) ≥ P (y|{x, y, z}).

We modify Acyclicity condition by replacing ≥ with the relation ≥∗ on [0, 1] × [0, 1] defined

by p ≥∗ q iff p > q or p = q ∈ (0, 1). The following condition is weaker than Acyclicity but

equivalent to it when Positivity holds.

Definition 16. P satisfies Weak Acyclicity if for any bijections f, g : {1, ..., n} → {1, ..., n}

P (x1|A1) > P (xf(1)|Ag(1)), P (xk|Ak) ≥∗ P (xf(k)|Ag(k)) for 1 < k < n

implies P (xn|An) 6≥∗ P (xf(n)|Ag(n)).
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We have the following generalization of our main theorem.

Theorem 3. Suppose Z is finite. Then P is represented by weak APU if and only if Weak

Acyclicity is satisfied.

The proof idea is essentially the same as in Section 2.2, except that we need additional care

in dealing with choice probabilities that are 0 or 1. FOC now takes the Kuhn-Tucker form

u(x)− c′(P (x|A)) + λ(A)


≥ 0 if P (x|A) = 1

= 0 if P (x|A) ∈ (0, 1)

≤ 0 if P (x|A) = 0.

(5)

We also modify the definition of a separable representation by

u(x) + λ(A) > u(y) + λ(B) if P (x|A) > P (y|B), (6)

u(x) + λ(A) = u(y) + λ(B) if 1 > P (x|A) = P (y,B) > 0.

Then we can show that weak APU, the existence of (u, c, λ) that satisfy (5), and the existence

of a separable representation (6) are all equivalent. And we again formulate the existence of a

cycle as a system of linear equalities and inequalities, and use a version of Farkas’s lemma to

show that Weak Acyclicity is equivalent to the existence of (u, c, λ) that satisfy the FOC.

Like Acyclicity, Weak Acyclicity implies an order on items.

Definition 17. P satisfies Item Acyclicity if

P (x1|A1) > P (x2|A1), P (xk|Ak) ≥∗ P (xk+1|Ak) for 1 < k < n

implies P (xn|An) 6≥∗ P (x1|An).

Item Acyclicity is equivalent to the existence of an ordinal ranking of items. It can be

seen as an extension of Richter’s (1966) congruence axiom, which is itself a generalization of

Houthakker (1950)’s Strong Axiom of Revealed Preference, and requires that if there is a cycle

x1, . . . , xn where each xi is chosen from a menu that contains xi+1, then if x1 and xn are both
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in a menu and x1 is chosen then xn is chosen as well.19 Also, as we showed in an earlier version

of this paper (Fudenberg, Iijima, and Strzalecki, 2014), Item Acyclicity characterizes a more

general form of weak APU where cost c can depend on menus.

Weak Acyclicity also implies an order on menus.

Definition 18. P satisfies Menu Acyclicity if

P (x1|A1) > P (x1|A2), P (xk|Ak) ≥∗ P (xk|Ak+1) for 1 < k < n

implies P (xn|An) 6≥∗ P (xn|A1).

Definition 19. P satisfies Regularity if P (x|B) ≤ P (x|A) for all A,B ∈ A and x ∈ A ⊆ B.

It is easy to see that Menu Acyclicity implies regularity so a fortiori APU are regular.20

Moreover, Menu Acyclicity characterizes a more general form of weak APU where cost c can

depend on items.21 As with Item Acyclicity, Menu Acyclicity is also equivalent to the existence

of a strict utility function when choice is deterministic, see Proposition 6, so in this case it

is also equivalent to congruence. Perhaps for this reason, the notion of a revealed weakness

ranking of menus has not been used in the literature on deterministic choice, but it is a natural

counterpart to the revealed attractiveness of items, and is potentially useful in other models of

stochastic choice.22

Finally, we note that though Item Acyclicity and Menu Acyclicity are both necessary con-

sequences of Weak Acyclicity, they are not sufficient.

19Unlike SARP, congruence is defined for general menus and not just budget sets. Richter (1966) studies
deterministic choice, and takes as primitive a choice correspondence that specifies a non-empty set of chosen
options C(A) ⊆ A for each menu A in some collection. The congruence axiom says that if x ∈ C(A), y ∈ A,
xj ∈ C(Aj), and xj+1 ∈ Aj hold for j = 1, 2, ..., n−1 at some menus A,A1, A2..., An and items y = x1, ..., xn = x,
then y ∈ C(A.) The derived representation sets the utilities of x1 and xn to be equal, which in our setting
corresponds to the case where the choice probabilities of x1 and xn are equal.

20To see this, take any A ⊆ B and suppose that P (x|A) < P (x|B) for some x. Then P (y|A) < P (y|B)
holds for any y ∈ A such that P (y|A) > 0; otherwise P (y|A) ≥∗ P (y|B), which violates Menu Acyclicity. Thus
1 =

∑
y∈A P (x|A) <

∑
y∈B P (y|B) = 1, a contradiction.

21See Fudenberg, Iijima, and Strzalecki (2014). Clark (1990)’s Theorem 3 gives an incorrect characterization:
The choice data A = {{x, y}, {y, z}, {x, z}}, P (x|{x, y}) = P (y|{y, z}) = P (z|{x, z}) = 1 satisfies the theo-
rem’s assumptions but does not have the asserted representation. Clark’s characterization is correct under the
additional assumption of Positivity, as then its conditions are equivalent to Menu Acyclicity.

22The literature following Kreps (1979) generates rankings of menus from data on menu choice, but we do not
use such data here, and two representations that are equivalent in our setting can have different implications
for menu choice—see Fudenberg and Strzalecki (forthcoming).
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Example 2. There are three items Z = {x, y, z}, menus A = {y, z}, B = {x, z}, C = {x, y},

with the choice probabilities P (x|Z) = 0.475,P (y|Z) = 0.425, P (y|A) = 0.525, P (x|B) = 0.575,

P (x|C) = 0.525. Notice that the menu ranking is acyclic (A is weaker than B is weaker than C

is weaker than Z) and the item ranking is acyclic (x is better than both y and z, y is better than

z). However, Weak Acyclicity fails because P (x|B) > P (y|A), P (y|Z) ≥∗ P (z|B), P (z|A) ≥∗

P (x|Z). N

However, when choice is deterministic (and single valued), all three conditions are equivalent.

Definition 20. P is deterministic if for all A ∈ A there exists x ∈ A such that P (x|A) = 1.

Proposition 6. Assume that P is deterministic. Then the following conditions are equivalent:

1. Item Acyclicity

2. Menu Acyclicity

3. Weak Acyclicity

4. There exists an injective function u : Z → R s.t. P (x|A) = 1 iff u(x) = maxz∈A u(z).

The equivalence of (1) and (4) follows from Richter (1966), and it is easy to see that (4)

implies (3) which implies (1) and (2). Finally, with deterministic choice the menu ranking

boils down to that of the best element, which is why (1) and (2) are equivalent.

5 APU as Payoff Uncertainty vs. Random Utility

Recent experimental papers show that stochastic choice can arise as deliberate randomization

by subjects, rather than random variation in their expected utility functions. In lottery choice

experiments, Agranov and Ortoleva (2015) find that a large majority of subjects select different

options when the same menus are offered several times in a row even when they are told that

the menus will be repeated. This tendency is most relevant for “hard” questions where there is

no item that is “clearly” better than others. According to the ex-post questionnaire, “subjects’

typical answer was that they did so because they didn’t know which option was best, and
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thus didn’t want to commit to a specific choice.”23 Dwenger, Kubler, and Weizsacker (2014)

find that subjects deliberately choose different options even when asked to make simultaneous

choices from two copies of the same menu of consumption goods, and report analogous findings

in a field study of students applying to German universities. This behavior is consistent with

the “payoff uncertainty” formulation of APU that we present below.

5.1 Perturbed Utility arising from Payoff Uncertainty

There are many possible ways to model the impact of the agent’s uncertainty about the payoffs of

various choices including robustness to model misspecification, as in Hansen and Sargent (2008).

Here we develop a specification that generalizes this idea along the lines of the variational

preferences of Maccheroni, Marinacci, and Rustichini (2006).

Suppose that when the agent chooses x she receives total utility u(x) + εx, where u(x) is

a baseline utility that she knows, and εx is an uncertain taste shock. For each probability

distribution on items p ∈ ∆(A) that the agent might choose, her utility is

inf
ε∈RA

∑
x∈A

p(x)[u(x) + εx] +
∑
x∈A

φ(εx), (7)

where φ is a convex function.

The interpretation of this objective function is that Nature picks ε = (εx)x∈A to minimize the

agent’s expected payoff. However, it is costly for Nature to make each component of the vector

ε small, so it will choose to assign higher values to items that are less likely to be chosen.24

This gives the agent an incentive to choose non-degenerate probability distributions p.25

In our setting, the objective function can also be seen as a desire to avoid feeling regret

about items that weren’t chosen. Here the vector ε specifies the “extra utility” of each item,

and the agent worries that Nature will choose the largest bonus on items he selects with low

23They also find that 29% of the subjects choose the option to flip a costly coin to randomize over items.
24In Maccheroni, Marinacci, and Rustichini (2006) the agent is uncertain about the probability distribution

over an objective state space. In our setting, the agent is uncertain about his true utility; thus the preferences
we consider here correspond to setting the space to be the possible values of ε.

25Saito (forthcoming) studies a random choice model of an ambiguity averse agent that allows for more general
timing of nature’s move. He considers choice over menus of acts, which presupposes an objective state space.
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probability.

We now show that weak APU corresponds to the additive form ΦA(ε) =
∑

x∈A φ(εx), where

φ : R → R ∪ {∞} is strictly convex, continuously differentiable where it is finite-valued, with

derivative whose range includes (−1, 0).26 We will call any such function φ a cost for Nature

function. The additive form of the Φ function is convenient for putting joint restrictions on

choices from different menus. It can be interpreted as Nature not knowing u and hence treating

each item symmetrically.

Definition 21 (Additive Variational Utility). A stochastic choice rule P has an additive

variational utility (AVU) representation if and only if there exists a utility function u : Z → R

and a cost for Nature function φ such that

P (A) = arg max
p∈∆(A)

(
inf
ε∈RA

∑
x∈A

p(x)[u(x) + εx] +
∑
x∈A

φ(εx)

)
.

Proposition 7.

1. P has an AVU representation if and only if P has a weak APU representation. Moreover,

if P has an AVU representation with (u, φ), then P has a weak APU representation with

(u, c), where c(q) = supε{qε − φ(−ε)}. Conversely, if P has a weak APU representation

with (u, c), then P has an AVU representation with (u, φ), where φ(ε)= supq>0{−εq−c(q)}.

2. P has an AVU representation with limε→∞ φ
′(ε) = 0 iff P has an APU representation.

Our proof of Proposition 7 uses convex duality. The first direction of the proof of part 1

constructs the cost function c from φ by setting c to be the convex conjugate of the function

φ̂(ε) := φ(−ε). The second direction constructs φ from the cost function c, by setting φ̂ to be

the convex conjugate of c and then setting φ(ε) := φ̂(−ε). To understand the second part of

the proposition, note that, by the envelope theorem, AVU implies an APU with the marginal

cost c′(p(x)) = −ε∗x, where ε∗x = φ′−1(−p(x)) is Nature’s optimal choice εx against p(x) ∈ (0, 1).

Because c′ is strictly increasing, ε∗x is strictly decreasing. The Inada condition limp→0 c
′(p) =

26We use these last two these conditions on φ only to ensure that arg minεx p(x)εx + φ(εx) exists and is
continuous in p(x) ∈ (0, 1).
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−∞ corresponds to limε→∞ φ
′(ε) = 0 so that limp(x)→0 ε

∗
x =∞. This generates strictly positive

choice probabilities because the payoff to any x diverges to ∞ as its probability goes to 0. The

AVU that corresponds to logit choice has φ(ε) = γ exp(− ε
γ
). In this case, the optimal choice of

Nature is ε∗x = −γ log(p(x)). The AVU corresponding to logarithmic APU has φ(ε) = −η log(ε),

with φ(ε) =∞ for negative ε. In this case, Nature’s optimal choice is ε∗x = η
p(x)

.

To relate asymptotic non-discrimination (Proposition 5) to AVU, note that as p(x) →

0 Nature will send the corresponding εx to infinity. Because c′(q) = −φ′−1(−q), c′−1(s) =

−φ′(−s), so AVU implies APU with h(s) = log(−φ′(−s)). Thus the condition lims→∞[h(t −

s) − h(−s)] = 0 in Proposition 5 is equivalent to lims→∞
φ′(s−t)
φ′(s)

→ 1, so Nature’s marginal

cost for rarely chosen items becomes flat. In this limit Nature’s choice depends on p but is

insensitive to the differences in utilities, so it is optimal for the agent to assign about the same

probability to all of the rarely chosen items.

5.2 Comparison to random utility

We now compare the revealed-preference implications of APU/AVU to those of random utility

models.

Definition 22 (Random Utility). A stochastic choice rule P has a random utility (RU)

representation if and only if there exists a utility function u : Z → R and a random variable

ε ∈ RZ such that for each A ∈ A and z ∈ A

P (z|A) = Prob{u(z) + εz ≥ max
y∈A

u(y) + εy}. (8)

Like APU, any RU choice rule satisfies regularity. We say that a RU is symmetric if

the distribution of {εz} is exchangeable, i.e., vectors (ε1, ..., εn) and (επ(1), ..., επ(n)) have the

same distribution for any permutation π. Under positivity, symmetric RU and Fechnerian are

observationally equivalent if the data consists only of binary menus; the additional structure

imposed by APU only matters when choice is observed from some larger menus. More generally,

any symmetric RU satisfies Item Acyclicity so weak APU with menu-dependent costs nests

symmetric RU. This applies in particular to any RU with i.i.d. shocks, as in the standard
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specification of the probit model. As the following example illustrates, such RU with i.i.d.

shocks excludes some choice data that is consistent with weak APU.

Example 3. Let Z = {x, y, z} with P (x|{x, y}) > P (y|{x, y}) > 0 and P (x|{x, z}) >

P (z|{x, z}) > 0. Then RU with i.i.d. shocks predicts P (z|{x, y, z}) > 0, because each of

u(x) − u(z) < εz − εx and u(y) − u(z) < εz − εy holds with positive probability. On the other

hand, weak APU can accommodate P (z|{x, y, z}) = 0 when y is preferred to z. N

Moreover, as the example below shows, APU can violate the Block-Marshak conditions

(Block and Marschak, 1960) that are necessary for RU.

Example 4. When Z = {w, x, y, z}, RU implies27

P (w|{w, x}) + P (w|{w, x, y, z}) ≥ P (w|{w, x, y}) + P (w|{w, x, z}).

We now construct an APU that violates this condition. Let u(w) = −1, u(x) = 3 and

u(y) = u(z) = 0, and c(p) = − log(p).28 Then P (w|{w, x}) ≈ 0.191, P (w|{w, x, y}) =

P (w|{w, x, z}) ≈ 0.177, and P (w|{w, x, y, z}) ≈ 0.161; thus,

P (w|{w, x}) + P (w|{w, x, y, z}) < P (w|{w, x, y}) + P (w|{w, x, z}). N

Weak stochastic transitivity, the condition that P (x|{x, y}) ≥ 1
2

and P (y|{y, z}) ≥ 1
2

imply

P (x|{x, z}) ≥ 1
2
, can be violated by RU (Marschak, 1959), while it is satisfied by weak APU.

More strongly, even with i.i.d. shocks RU need not correspond to weak APU.

Example 5. Let Z = {x1, x2, y1, y2, y3}. Let the utility function be u(x1) = u(x2) = w and

u(y1) = u(y2) = u(y3) = 0. Let A = {x1, x2, y1} and B = {x1, y1, y2, y3, y4, y5, y6}. Consider

the probit model in which εz follows i.i.d. normal distribution N(0, 1) for each z ∈ Z. Under

probit the choice probabilities are

P (z|A) =

∫ ∏
z′∈A\z

Φ(u(z) + εz − u(z′))φ(εz)dεz

27If |Z| = 3, then any choice rule that satisfies regularity has a RU representation (Block and Marschak,
1960), so any APU has a RU representation.

28Note, that this result is different than Proposition 2.2 of Hofbauer and Sandholm (2002), where the utility
function is known.
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where Φ and φ are the cumulative distribution and the density under N(0, 1). Then we have

P (x1|B) ≈ 0.4574 > P (x1|A) ≈ 0.4526 and P (y1|A) ≈ 0.0949 > P (y1|B) ≈ 0.0904 when w is

near 1.13. That is, there exists a menu cycle, as B is weaker than A for x1 but A is weaker

than B for y1. This implies that this choice behavior cannot be rationalized by any weak

APU. N

 RU APU

Luce

menu-dependent APU

item-dependent APU

symmetric  RU  

Figure 1: Relationship between APU and Random Utility.

To accommodate observed choice behavior that violates IIA, the logit model has been ex-

tended to nested logit. Our working paper (Fudenberg, Iijima, and Strzalecki, 2014) gives a

revealed-preference characterization of nested logit and of an extension that allows for menu-size

penalties. It also considers a particular form of nested model with only two nests, a “default

option” B1 = {x∗} and “everything else” B2. We use this to capture the phenomenon of “choice

overload” as seen in Iyengar and Lepper (2000), where consumers are less likely to purchase

when faced with a superset of a smaller menu.
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6 Conclusion

As we have shown, perturbed utility functions are relatively tractable and have an easily un-

derstood axiomatic characterization that applies even when choice data is only observed for a

subset of the possible menus. Moreover, these utility functions can be understood as describing

choices of an agent who faces uncertainty about his true utility, modeled as smooth variational

preferences. These features made it easy to develop further refinements, such as limited dis-

crimination, which relaxes the IIA assumption implicit in the entropy cost function. As noted

by Chernev (2012), there has been relatively empirical work on how menu size changes choice

probabilities; we hope that the analytic foundations provided here may stimulate further em-

pirical work. Our results may also prove helpful in designing more careful empirical analyses

of just what sorts of randomization devices people prefer to use.
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Appendix

A.1 Proofs of Main Results

A.1.1 Rational Farkas

The following result, called the theorem of the alternative, or Farkas’ lemma, is usually applied

to vector spaces over the field of real numbers R, but also applies to vector spaces over the field

of rational numbers Q.29 Let S be a finite set and treat QS as a vector space over the field

of rational numbers Q. Let 〈·, ·〉 denote the inner product in QS. For any vector w ∈ QS and

subset T ⊆ QS we write w ⊥ T if 〈w, t〉 = 0 for all t ∈ T . For any t, b ∈ QS we write t ≤ b

whenever this inequality holds pointwise.

Lemma A.1.1. Let b ∈ QS and T be a linear subspace of QS. Exactly one of the following

conditions holds.

1. there exists t ∈ T such that t ≤ b

2. there exists w ∈ QS
+ such that w ⊥ T and 〈w, b〉 < 0.

To understand the geometric interpretation of this Lemma consider first the case when T is

a hyperplane, i.e., is of dimension |S| − 1, and let B be the set of all points weakly dominated

by b. The set B ∩ T is nonempty whenever Condition (1) holds. The set B ∩ T is empty

whenever there exists a hyperplane that separates B from T , namely T itself; because of the

shape of B, this hyperplane is generated by a vector w ∈ QS
+. This is equivalent to Condition

(2). To obtain the separating hyperplane in the case when T is lower dimensional a superspace

of T is used.

A.1.2 Lemma 2

Lemma 2. The following conditions are equivalent.

29See, e.g., Kraft, Pratt, and Seidenberg (1959).
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(a) There exists (u, c) such that P has a weak APU representation with (u, c)

(b) There exists (u, c, λ) such that P satisfies the FOC (5) with (u, c, λ)

(c) There exists (u, λ) such that P satisfies (6) with (u, λ).

Proof of Lemma 2

equivalence of (a) and (b): By the strict convexity of the objective function, a necessary

and sufficient condition for P (A) = arg maxp∈∆(A) V
u
c (p) is that P (A) solves

max
p∈R|A|

∑
z∈A

[
u(z)p(z)− c(p(z))

]
+ λ(A)(

∑
z

p(z)− 1) +
∑
z

[
λz0(A)p(z) + λz1(A)(p(z)− 1)

]
such that λz0(A), λz1(A) ≥ 0 and λz0(A)p(z) = λz0(A)(p(z) − 1) = 0 for each z ∈ A, where

multipliers λ(A), λz0(A), and λz1(A) are associated with
∑

z p(z) = 1, p(z) ≥ 0, and p(z) ≤ 1,

respectively. This is equivalent to the conditions

∀z ∈ A, u(z)− c′z1 (A) + λz0(A) = 0,

where λz1(A) ≥ 0 = λz0(A) if P (x|A) = 1, λz0(A) = λz1(A) = 0 if P (x|A) ∈ (0, 1), and λz0(A) ≥

0 = λz1(A) if P (x|A) = 0.

(b) implies (c): The separability condition holds because c′−1 is strictly increasing.

(c) implies (b): Suppose that there exist u and λ such that (u, λ) is a separable represen-

tation. It is without loss to assume that both take values in (0, 1). Then, define

w̄ :=


2 if P (z|A) < 1 ∀(z, A) ∈ D

min{u(x) + λ(A)|(x,A) ∈ D, P (x|A) = 1} otherwise.

w :=


0 if P (z|A) > 0 ∀(z, A) ∈ D

max{u(x) + λ(A)|(x,A) ∈ D, P (x|A) = 0} otherwise.

Let g : [0, 1] → R be a strictly increasing and continuous function such that (i) g(0) = w,

(ii) g(P (x|A)) = u(x) + λ(A) if P (x|A) ∈ (0, 1), and (iii) g(1) = w̄. Such function exists

because u(x) + λ(A) > u(y) + λ(B) if P (x|A) > P (y|B), and u(x) + λ(A) = u(y) + λ(B) if
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P (x,A) = P (y|B) ∈ (0, 1). Define c : [0, 1]→ R by c(p) =
∫ p

0
g(q)dq. Then FOC (2) is satisfied

at each menu. Q.E.D.

The proof of lemma 1 follows the same lines, with (5) in part (b) replaced by (2), so that

the FOC holds with equality, and the definition of separability in (c) tightened from (6) to (3).

A.1.3 Proof of Theorem 1

To show the equivalence of Acyclicity and APU, modify the proof of Theorem 3 to show the

equivalence of Acyclicity and (6), and then use Lemma 1. Because of Lemma 2, it suffices to

show the equivalence of Ordinal IIA and (5)

To show that (5) implies Ordinal IIA, we have

c′(P (x|A))− c′(P (y|A)) = c′(P (x|B))− c′(P (y|B))

for each A,B and x, y ∈ A ∩ B. Setting the strictly increasing function f : [0, 1) → R+ by

f(0) = 0 and f(q) = exp[c′(q)] for each q > 0, we obtain

f(P (x|A))

f(P (y|A))
=
f(P (x|B))

f(P (y|B))

for each A,B and x, y ∈ A ∩B, so that Ordinal IIA is satisfied.

To show that Ordinal IIA implies (5), construct a cost function by setting c′(q) := log(f(q))

where f is taken from the Ordinal IIA property. Because c′ is continuous, c(q) =
∫ q

1
2
c′(t)dt is well

defined for each q ∈ (0, 1). Note that c is C1 and strictly convex, and that limq→0 c
′(q) = −∞.

Fix any item x and set u(x) := 0. For any other item z 6= x, set u(z) := c′(P (z|{x, z})) −

c′(P (x|{x, z})). Take an arbitrary menu A and y, z ∈ A. There are two exclusive cases.
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Case (i): x ∈ {y, z}. Set y = x without loss of generality. Then

u(z)− u(x) = c′(P (z|{x, z}))− c′(P (x|{x, z}))

= log

(
f(P (z|{x, z}))
f(P (x|{x, z}))

)
= log

(
f(P (z|A))

f(P (x|A))

)
(∵ Ordinal IIA)

= c′(P (z|A))− c′(P (x|A))

Case (ii): x 6∈ {y, z}.

u(z)− u(y) = c′(P (z|{x, z}))− c′(P (x|{x, z}))− c′(P (y|{x, y})) + c′(P (x|{x, y}))

= log

(
f(P (z|{x, z}))
f(P (x|{x, z}))

f(P (x|{x, y}))
f(P (y|{x, y}))

)
= log

(
f(P (z|{x, y, z}))
f(P (x|{x, y, z}))

f(P (x|{x, y, z}))
f(P (y|{x, y, z}))

)
(∵ Ordinal IIA)

= log

(
f(P (z|{x, y, z}))
f(P (y|{x, y, z}))

)
= log

(
f(P (z|A))

f(P (y|A))

)
(∵ Ordinal IIA)

= c′(P (z|A))− c′(P (y|A))

Therefore the equalities in the above two cases imply that FOC at A is satisfied. Q.E.D.

A.1.4 Proof of Theorem 3

By Lemma 2 it suffices to show the equivalence of Weak Acyclicity and a separable representa-

tion. Suppose that there exists a separable representation (u, λ). Weak Acyclicity is satisfied,

as otherwise then u(xi) +λ(Ai) ≥ u(yi) +λ(Bi) for all i with at least one strict. Summing over

i yields a contradiction because of the permutation property.

For the converse let Q∗ be the vector space over the field of rational numbers whose coor-

dinates correspond to ordered pairs (α, β) = {(xα, Aα), (xβ, Aβ)} with P (xα|Aα) ≥∗ P (xβ|Aβ).

Represent a collection of these pairs by the vector w whose coordinates count the number of

times the corresponding relation appears.

29



A collection is a cycle if it (a) at least one comparison is strict and (b) each item and each

menu appear same number of times on each side.

Step 1:We will now represent a cycle as a collection that satisfies certain linear inequalities.

Define b ∈ Q∗ as follows:

b(α, β) =


−1 if P (xα|Aα) > P (xβ|Aβ)

0 if P (xα|Aα) = P (xβ|Aβ) ∈ (0, 1)

Note that for any w ∈ Q∗, 〈w, b〉 < 0 iff at least one comparison in a collection of order

comparisons represented by w is strict. For each z ∈ Z define tz ∈ Q∗ by

tz(α, β) =


−1 if xα = z and xβ 6= z

1 if xα 6= z and xβ = z

0 otherwise.

Note that 〈w, tz〉 = 0 iff z features equal number of times on each side of the cycle represented

by w. For each C ∈ A define tC ∈ Q∗ by

tC(α, β) =


−1 if Aα = C and Aβ 6= C

1 if Aα 6= C and Aβ = C

0 otherwise.

Similarly, 〈w, tC〉 = 0 iff C features equal number of times on each side of the cycle represented

by w. Let T be the linear subspace generated by the collection {tz}z∈Z ∪ {tC}C∈A. Thus,

w ∈ Q∗ represents a cycle if and only if w ⊥ T and 〈w, b〉 < 0.

Step 2: Since Weak Acyclicity implies that there does not exist w that meets the conditions

of Step 1, there cannot exist w ∈ Q∗ such that w ⊥ T and 〈w, b〉 < 0. Lemma A.1.1 implies

that there exists t ∈ T such that t ≤ b.

Step 3: The existence of such t implies that there exist a separable representation (u, λ).

To see that, note that since t ∈ T , there are functions u : Z → Q and λ : A → Q such
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that t =
∑

z∈Z u(z)tz +
∑

C∈A λ(C)tC . Thus, the functions u and λ are the coordinates of t

in T . Next, observe that t ≤ b implies that (u, λ) is a separable representation: if P (x|A) >

P (y|B), then t((x,A), (y,B)) = −u(x) − λ(A) + u(y) + λ(B) ≤ b((x,A), (y,B)) = −1, so

u(x) + λ(A) > u(y) + λ(B). If P (x|A) = P (y|B) ∈ (0, 1), then t((x,A), (y,B)) ≤ 0; by

symmetry, t((x,A), (y,B)) ≥ 0; thus, u(x) + λ(A) = u(y) + λ(B). Q.E.D.

A.2 Proof of Theorem 2

To prove the first part of the theorem we rely on the same argument as in the proof of Theorem

1. We only prove the “only if” direction of the second part. For this purpose we construct an

increasing sequence of finite subsets Zn of Z with corresponding APU representations (un, cn).

Given this sequence, we show that the limit cost function c is finite, strictly increasing, and

continuous on (0, 1). We use this limit cost function to construct a function fso that Ordinal

IIA holds, and then the first part of the theorem implies there is an APU representation.

A.2.1 Intermediate results

We first show that Continuity implies several useful richness properties of P . The first one,

guarantees an existence of a midpoint between any two elements of Z.

Lemma 3. For any x, y ∈ Z there exists z ∈ Z such that P (x|{x, z}) = P (z|{y, z}).

Proof : If P (x|{x, y}) = 0.5, then the existence of z follows from Richness (with p = q = 1
3
).

Otherwise, let f(z) := P (x|{x, z})−P (z|{y, z}) and note that by Continuity, f is a continuous

function. By Richness, there exist items x′, y′ ∈ Z such that P (x′|{x, x′}) = P (y′|{y, y′}) = 0.5.

Thus, f(x′) = 0.5− P (x′|{x′, y}) = 0.5− P (x|{x, y}) = −f(y′), where the equality of the two

probabilities follows from Acyclicity. Since Z is a connected space the intermediate value

theorem implies that there exists z ∈ Z with f(z) = 0. QED

Lemma 4. For any x, y, z ∈ Z and any q ∈ (0, 1) such that P (x|{x, z}) ≤ q ≤ P (y|{y, z})

there exists w ∈ Z such that P (w|{w, z}) = q.
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Proof : Define f(w) := P (w|{w, z}); since f(x) ≤ q ≤ f(y) and Z is connected, the intermedi-

ate value theorem implies that there exists w ∈ Z with f(w) = q. QED

Acyclicity implies the quadruple condition of Davidson and Marschak (1959).

Lemma 5. For any a, b, c, d ∈ Z we have P (a|{a, b}) ≥ P (c|{c, d}) if and only if P (a|{a, c}) ≥

P (b|{b, d}).

Proof : Suppose that P (a|{a, b}) ≥ P (c|{c, d}) but P (a|{a, c}) < P (b|{b, d}). Then since the

choice probabilities sum up to one, P (c|{a, c}) > P (d|{b, d}) and P (b|{a, b}) ≤ P (d|{c, d}).

These four inequalities are a cycle.

The conditions derived in Lemmas 4 and 5 let us invoke the theorem of Debreu (1958) to

conclude that P on binary menus has a “Fechnerian utility” representation.

Corollary 1. Under Acyclicity, Richness, and Continuity there exists u : Z → R such that:

P (a|{a, b}) ≥ P (c|{c, d}) iff u(a) − u(b) ≥ u(c) − u(d). Moreover, u is unique up to positive

affine transformations.

For any finite subset of Z the function u induces the same order on elements as any of the

possible APU representations. We use this fact in the proof of Claims 1 and 3 below.

A.2.2 Constructing a grid approximation

Since Z is a separable space, there exists a countable dense set Y = {y1, y2, . . .}. Let Yn :=

{y1, . . . , yn}. The finite sets Zn will be constructed recursively. Each of them will be the union

of Yn, a standard sequence Z̃n of points with utility differences equal to 2−n, and additional

points with choice probabilities p = k
2n+1 , k = 1, . . . , 2n+1.

A.2.2.1 The construction of Z1

Fix an arbitrary element z0 ∈ Z and let p∗ ∈ (0, 1
2
). By Richness, there exist elements

z−1, z1 ∈ Z s.t. P (z−1|{z−1, z0}) = p∗ = P (z0|{z0, z1}). By Lemma 3, there exist mid-

points z−0.5, z0.5 such that P (z−1|{z−1, z−0.5}) = P (z−0.5|{z−0.5, z0}) and likewise for z0.5. Let

Z̃1 := {z−1, z−0.5, z0, z0.5, z1}.
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By Richness, there exists A 1
4
∈ A and x 1

4
∈ A and such that P (x 1

4
|A 1

4
) = 1

4
and P (z0|A 1

4
) =

1
2
, and there is x 3

4
∈ Z such that P (x 1

4
|{x 1

4
, x 3

4
}) = 1

4
. Let Z1 := Z̃1 ∪ A 1

4
∪ {x 3

4
} ∪ Y1.

By Theorem 1 on Z0, there is an APU representation (û1, ĉ1) of P . Note that by the FOC

we have that û1(z1)− û1(z0) = ĉ′1(1− p∗)− ĉ′1(p∗) = û1(z0)− û1(z−1). Note that (u1, c1) is also

an APU representation of P , where

u1(z) := [û1(z1)− û1(z0)]−1[û1(z)− û1(z0)] for all z ∈ Z1

c1(p) := [û1(z1)− û1(z0)]−1[ĉ1(p)− pĉ′1(
1

2
)− ĉ1(

1

2
)] for all p ∈ (0, 1).

Note that u1(zr) = r for r ∈ {−1,−0.5, 0, 0.5, 1} and c1(1
2
) = 0 = c′1(1

2
). Note also that by

FOC we have c′1(1
2
)− c′1(1

4
) = u1(z0)− u1(x 1

4
), so c′1(1

4
) = u1(x 1

4
). We also have c′1(3

2
)− c′1(1

4
) =

u1(x 3
4
)− u1(x 1

4
), so c′1(3

4
) = u1(x 3

4
).

A.2.2.2 The construction of Zn+1

By Richness, there are z−n−1, zn+1 ∈ Z s.t. P (z−n−1|{z−n−1, z−n}) = p∗ = P (zn|{zn, zn+1}).

By Lemma 3, for any zr, zr+2−n ∈ Z̃n there exists a midpoint zr+2−n−1 . Likewise, there is a

midpoint zn+0.5 between zn and zn+1, and there are further midpoints between these, such as

zn+0.25, etc. Let Z̃n+1 := {zr : r = k
2n+1 , k = −(n+ 1)2n+1 . . . (n+ 1)2n+1}

By Richness, for p = k
2n+2 , k = 1, . . . , 2n+1 there exist xp ∈ Ap ∈ A such that P (xp|Ap) = p

and P (z0|Ap) = 1
2
. By Richness there exist x1−p ∈ Z such that P (xp|{xp, x1−p}) = p. Let

Z2 := Z̃2 ∪ Y2 ∪
⋃

p= k
2n+2 ,k=1,...,2n+1

Ap ∪
⋃

p= k
2n+2 ,k=2n+1+1...,2n+2−1

{xp}.

By Theorem 1 on Zn+1 there exists an APU representation (ûn+1, ĉn+1). Use the rescaling

as above so that the representation (un+1, cn+1) has the following properties:

• un+1(zr) = r for r = k
2n+1 , k = −(n+ 1)2n+1 . . . (n+ 1)2n+1.

• c′n+1(p) = un+1(xp) for p = k
2n+2 , k = 1, . . . , 2n+2 − 1; c′n(1

2
) = cn(1

2
) = 0.
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A.2.3 Properties of the limit cost function

Define c′(q) := lim supm c
′
m(q) for each q ∈ (0, 1). FOC implies c′n(1 − p∗) − c′n(p∗) = un(z1) −

un(z0) = 1 for each n, so that c′∗)− c′∗) = 1. Also note that c′(1
2
) = 0.

Claim 1. c′(q) is strictly increasing and finite at all q ∈ (0, 1).

Proof : First, note that Corollary 1 implies that u(zi+1) − u(zi) = u(zi) − u(zi−1) for all

i, which implies that the range of u is unbounded from both above and below. Moreover,

u(zr+ 1
2n

) − u(zr) = 2−n[u(zr+1) − u(zr)] →n→∞ 0, which follows since the sequence Z̃n was

constructed by taking midpoints and from the fact that the Fechnerian utility of a midpoint

equals the average of the two endpoints.

Take any q = k
2m+1 , q

′ = k−1
2m+1 for some m ∈ N, k ∈ {2, 3, ...., 2m+1 − 1}. By the above

observation, for n′ large enough, there exist zr, zr′ ∈ Z̃n′ such that u(z−n′) < u(xq′) < u(zr′) <

u(zr) < u(xq) < u(zn′). This implies that −n′ = un(z−n′) < un(xq′) < un(zr′) < un(zr) <

un(xq) < un(zn′) = n′ for all n > n′.

Since c′(q) = lim supn un(xq), it follows that c′(q) is finite (and likewise for c′(q′)). To show

monotonicity, note that by construction un(zr)− un(zr′) is independent of n; denote this value

δ > 0. By construction we have c′n(q) = un(xq) and c′n(q′) = un(xq′), thus, c′n(q) − c′n(q′) > δ,

so c′(q)− c′(q′) > δ > 0.

To show that c′ is finite on (0, 1), note that for any q′′ ∈ (0, 1) there exist q, q′ of the form

above such that q′ < q′′ < q, so the result follows from weak monotonicity of c′, which holds by

its definition. To show that c′ is strictly increasing on (0, 1) note that, for any q > q′ in (0, 1)

there are k,m such that q > k
2m

> k−1
2m

> q′, which ensures c′(q) > c′(q′). QED.

Let C denote the set of points q ∈ (0, 1) at which c′(q) is continuous. By the previous claim,

(0, 1) \ C is at most countable.

Claim 2. For any A,B, x, y ∈ A∩B such that P (x|A), P (x|B), P (y|A), P (y|B) ∈ C, c′(P (x|A))−

c′(P (y|A)) = c′(P (x|B))− c′(P (y|B)) holds.

Proof: Denote A ∪ B = {z1, ..., zm}. By construction of Zn and separability of Z we can

choose sequences (zjn)n∈N,j=1,...,m of items such that limn→∞ z
j
n = zj for each j = 1, ...,m and
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{z1
n, ..., z

m
n } ⊆ Zn for each n. We can choose a subsequence so that limk→∞ c

′
nk

(p) = c′(p) for each

p = P (x|A), P (x|B), P (y|A), P (y|B). By Continuity, P (xnk
|Ank

) → P (x|A), P (ynk
|Ank

) →

P (y|A), P (xnk
|Bnk

)→ P (x|B), and P (ynk
|Bnk

)→ P (y|B), for some An, Bn ⊆ {z1
n, ..., z

m
n } and

xn, yn ∈ {z1
n, ..., z

m
n }. It remains to show that, along a subsequence, c′n(P (xn|An))→ c′(P (x|A))

and likewise for the other three elements, which together with the FOC c′n(P (xn|An)) −

c′n(P (yn|An)) = c′n(P (xn|Bn))− c′n(P (yn|Bn)) implies the conclusion.

Denote q∗ := P (x|A) and qn := P (xn|An) for each n. Fix ε > 0; because c′ is continuous

at q∗, there is δ > 0 such that |c′(q∗) − c′(q)| < ε
2

for all q ∈ [q∗ − δ, q∗ + δ]. By taking a

subsequence, there is n̄ such that |c′nkl
(q∗ − δ)− c′(q∗ − δ)|, |c′nkl

(q∗ + δ)− c′(q∗ + δ)| < ε
2

for all

nkl ≥ n̄. As liml qnkl
= q∗, there is n̄′ such that qnkl

∈ [q∗− δ, q∗+ δ] for all nkl ≥ n̄′. Therefore,

for any nkl ≥ max{n̄, n̄′}, we have

|c′(q∗)− c′nkl
(qnkl

)| ≤ max{|c′(q∗)− c′nkl
(q∗ − δ)|, |c′(q∗)− c′nkl

(q∗ + δ)|}

≤ max{|c′(q∗)− c′(q∗ − δ)|+ |c′(q∗ − δ)− c′nkl
(q∗ − δ)|,

|c′(q∗)− c′(q∗ + δ)|+ |c′(q∗ + δ)− c′nkl
(q∗ + δ)|} < ε

where the first inequality follows because c′nkl
is increasing. QED.

Claim 3. c′ is continuous at all q ∈ (0, 1).

Proof : Suppose to the contrary that c′ is discontinuous at some q∗ ∈ (0, 1). Take any q∗∗ ∈ C

strictly less than 1 − q∗. Fix x ∈ Z; by Richness 1.1, there are y, z such that P (x|{x, y, z}) =

q∗, P (y|{x, y, z}) = q∗∗. Define a subset H of (0, 1)2 by H := {(P (x|{x, y, z′}), P (y|{x, y, z′})) :

z′ ∈ Z}. By continuity of P and connectedness of Z, the set H is connected. Let H+ :=

{(px, py) ∈ H : px ≥ q∗, py ≥ q∗∗} and H− := {(px, py) ∈ H : px ≤ q∗, py ≤ q∗∗}. Note also that

by Acyclicity for all z′ ∈ Z

P (x|{x, y, z′}) > q∗ iff P (y|{x, y, z′}) > q∗∗; (*)

thus, H = H+∪H−. By Richness there exist z−, z+ ∈ Z such that P (z|{z−, z}) > P (z−|{z−, z})

and P (z|{z+, z}) < P (z+|{z+, z}). By Acyclicity, this implies that the sets H+ \{(q∗, q∗∗)} and
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H− \ {(q∗, q∗∗)} are nonempty.30

Since (0, 1) \ C is at most a countable set and H is connected, there exist sequences

zn+, z
n
− ∈ Z such that C2 ∩ H− 3 (P (x|{x, y, zn+}), P (y|{x, y, zn+})) → (q∗, q∗∗) and C2 ∩ H+ 3

(P (x|{x, y, zn−}), P (y|{x, y, zn−}))→ (q∗, q∗∗). By Claim 2, c′(P (x|{x, y, zn−}))−c′(P (y|{x, y, zn−})) =

c′(P (x|{x, y, zn+})) − c′(P (y|{x, y, zn+})) for every n, and thus limp↗q∗ c
′(p) − limq↗q∗∗ c

′(q) =

limp↘q∗ c
′(p)− limq↘q∗∗ c

′(q), which leads to a contradiction. QED

Thus the equality in Claim 2 holds for all menus A,B and items x, y ∈ A ∩ B, so Ordinal

IIA holds with f := exp[c′]. By the first part, there exists an APU representation (u, c) of P .

By Continuity of P and FOC of the form u(x)− u(y) = c′(P (x|{x, y}))− c′(1− P (x|{x, y})),

it follows that u is continuous.

Finally, to show uniqueness let (u, c) and (û, ĉ) be APU representations of P . Note that

P (a|{a, b}) ≥ P (c|{c, d}) iff u(a) − u(b) ≥ u(c) − u(d) iff û(a) − û(b) ≥ û(c) − û(d). Thus

from Corollary 1, û = αu + β for some α > 0, β ∈ R. Take any p, p′ ∈ (0, 1). Then for any

q < 1 − p, 1 − p′ by Richness P (x|A) = p, P (y|A) = q, P (x′|A′) = p′, P (y′|A′) = q for some

menus and items. By FOC

ĉ′(p)− ĉ′(p′) = ĉ′(p)− ĉ′(q) + ĉ′(q)− ĉ′(p′) = û(x)− û(y) + û(y′)− û(x′)

= α (u(x)− u(y) + u(y′)− u(x′)) = α (c′(p)− c′(q) + c′(q)− c′(p′)) = α (c′(p)− c′(p′)) .

Let γ := ĉ′(1
2
) − αc′(1

2
). Then, for any p ∈ (0, 1), ĉ′(p) − ĉ′(1

2
) = α(c′(p) − c′(1

2
)) and thus

ĉ′(p) = αc′(p) + γ. Define δ := ĉ(1
2
) − αc(1

2
) − γ

2
. Then, for any p ∈ (0, 1), ĉ(p) − ĉ(1

2
) =∫ p

1
2
ĉ′(q)dq =

∫ p
1
2
(αc′(q) + γ)dq = α(c(p)− c(1

2
)) + (p− 1

2
)γ and thus ĉ(p) = αc(p) + δ + γp.

A.3 Proof of Proposition 1

First, suppose that P has a Fechnerian representation. Thus there exists u such that P (x|{x, y}) ≥

P (x′|{x′, y′}) iff u(x) − u(y) ≥ u(x′) − u(y′). Define λ({x, y}) := −u(x)+u(y)
2

for each binary

30For example, we show that H+ \ {(q∗, q∗∗)} is nonempty. Suppose not. Then by (*) we have that q∗∗ ≥
P (y|{x, y, z−}) and since probabilities sum up to one we have that P (z−|{x, y, z−}) ≥ P (z|{x, y, z}). The last
two inequalities, together with P (z|{z−, z}) > P (z−|{z−, z}) form a cycle; contradiction.
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menu {x, y}. Then P (x|{x, y}) ≥ P (x′|{x′, y′}) iff u(x) + λ({x, y}) ≥ u(x′) + λ({x′, y′}). This

separable representation ensures that Acyclicity is satisfied.

Second, suppose that Acyclicity is satisfied. Then P has an APU representation by either

Theorem 1 or 2. By FOC u(x)−u(y) = c′(P (x|{x, y}))− c′(1−P (x|{x, y})) holds for any x, y.

Because c′ is strictly increasing, P (x|{x, y}) ≥ P (x′|{x′, y′}) iff u(x) − u(y) ≥ u(x′) − u(y′),

which implies the existence of a Fechnerian representation. Q.E.D.

A.4 Proof of Proposition 2

Note first that FOC and Pi(x|{x, y}) = 1− Pi(x|{x, y}), i = 1, 2, imply that for all {x, y} ∈ A

c′1(P1(x|{x, y}))−c′1(1−P1(x|{x, y})) = u(x)−u(y) = c′2(P2(x|{x, y}))−c′2(1−P2(x|{x, y})). (9)

To show “if” direction, take any x, y with P2(x|{x, y})≥P2(y|{x, y}), which implies u(x)≥

u(y). Since c′i(p)− c′i(1−p) is strictly increasing in p, P1(x|{x, y})≥P2(x|{x, y}) follows by (9).

To show “only if”, suppose to the contrary that there is q ∈ (1
2
, 1) such that c′1(q)−c′1(1−q) >

c′2(q)−c′2(1−q). By Richness there exist x, y such that P1(x|{x, y}) = q. Since c′2(p)−c′2(1−p)

is strictly increasing in p, (9) implies P2(x|{x, y}) > q, a contradiction. Q.E.D.

A.5 Proof of Proposition 3

For each i = 1, 2, let λi(A) denote the Lagrange multiplier at menu A under (u, ci). To show

“only if” part, suppose to the contrary, i.e., c′′1 ≤ c′′2 does not hold at some point in (0, 1). By

continuity of the second derivatives there exists interval (q, q̄) such that c′′1(q) > c′′2(q) for all

q ∈ (q, q̄).

Note that Richness ensures that the range of u is unbounded from below and above. Thus

there are x, y such that Pi(x|{x, y}) > q̄ for each i = 1, 2. By Continuity u is continuous,

and {Pi(x|{x, y, z})|z ∈ Z} is connected for each i = 1, 2. Note that Pi(x|{x, y, z}) → 0

as u(z) → ∞ and Pi(x|{x, y, z}) → Pi(x|{x, y}) as u(z) → −∞. Thus by the intermediate

theorem we can take z1 such that P1(x|{x, y, z1}) ∈ (q, q̄). And likewise we can take z2 such
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that P2(x|{x, y, z2}) = P1(x|{x, y, z1}). Note that, for fixed y, the value λi({x′, y, z′i}) de-

pends only on utilities (u(x′), u(z′i)), and thus can be written as λi({x′, y, z′i}) = gi(u(x′), u(z′i)).

This function gi is continuous and strictly decreasing in each argument. Therefore, for a

strictly decreasing sequence εk ↘ 0, we can find an increasing sequence ε′k ↗ 0 such that

g1(u(x) + εk, u(z) + ε′k) = g1(u(x), u(z1)) for all large enough k. Pick such k so that c′−1
1 (u(x) +

εk + g(u(x), u(z))) < q̄. By connectedness and continuity we can take x′ and z′1 such that

u(x′) = u(x) + εk and u(z′1) = u(z) + ε′k. Note that we have P1(x′|{x′, y, z′1}) < q̄ and

P1(y|{x, y, z1}) = P1(y|{x′, y, z′1}) by construction. Using the same argument we can take

z′2 such that g2(u(x′), u(z′2)) = g2(u(x), u(z2)), or P2(y|{x, y, z2}) = P2(y|{x′, y, z′2}).

In the above construction u(x′) > u(x) holds, which ensures P1(x′|{x, x′}) > 1
2
. Then,

because P1 is more selective than P2, P1(x′|{x, y, z′1}) ≥ P2(x′|{x, y, z′2}) follows.

By FOC, for each i = 1, 2

c′i(Pi(x|{x, y, zi})) = u(x) + λi({x, y, zi}), c′i(Pi(x
′|{x, y, z′′i ) + λi({x′, y, z′i})

so c′1(P1(x′|{x′, y, z′i}))− c′1(P1(x|{x, y, zi})) = c′2(P2(x′|{x′, y, z′2}))− c′2(P2(x|{x, y, z2})), or

∫ P1(x′|{x′,y,z′1})

P1(x|{x,y,z1})
c′′1(p)dp =

∫ P2(x′|{x′,y,z′2})

P2(x|{x,y,z2})
c′′2(p)dp (10)

By P1(x′|{x′, y, z′1}) ≥ P2(x′|{x′, y, z′2}) and P1(x|{x, y, z1}) = P2(x|{x, y, z2}), it leads to a

contradiction.

To show the “if”, take any x, x′, y, z1, z2 such that Pi(y|{x, y, zi}) = Pi(y|{x′, y, z′i}), i = 1, 2

and P1(x|{x, y, z1}) = P2(x|{x, y, z2}), P1(x|{x, x′}) > P1(x|{x, x′}). As in the “only if” above,

FOC implies (10), which ensures P1(x′|{x′, y, z′1}) ≥ P2(x′|{x′, y, z′2}). Q.E.D.

A.6 Proof of Proposition 4

To show the first direction, take any A,B with x, y ∈ A ∩ B such that P (x|A) ≥ P (x|B)

and P (x|A) > P (y|A). Acyclicity implies that P (y|A) ≥ P (y|B) holds. Thus from the FOCs

u(x) + λ(A) = c′(P (x|A)), it follows that λ(A) ≥ λ(B) and u(x) > u(z). Using these FOCs,
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we can express the log-ratio of choice probabilities as

log

(
P (x|A)

P (y|A)

)
= log

(
c′−1(u(x) + λ(A))

c′−1(u(y) + λ(A))

)
= h(u(x) + λ(A))− h(u(y) + λ(A))

≥ h(u(x) + λ(B))− h(u(y) + λ(B))

= log

(
c′−1(u(x) + λ(B))

c′−1(u(y) + λ(B))

)
= log

(
P (x|B)

P (y|B)

)
,

where the inequality follows by the convexity of h, u(x)−u(y) > 0, and λ(A) ≥ λ(B). Therefore

P (x|A)/P (y|A) ≥ P (x|B)/P (y|B).

Q.E.D.

A.7 Proof of Proposition 5

1): To show that Asymptotic Non-Discrimination holds, take any sequence of menus An such

that x, y ∈ An for each n and limn P (x|An) = limn P (y|An) = 0. From the FOC u(x)+λ(An) =

c′(P (x|An)) and limq→0 c
′(q) = −∞, P (x|An)→ 0 implies λ(An)→ −∞. Therefore

log

(
P (x|An)

P (y|An)

)
= log

(
c′−1(u(x) + λ(An))

c′−1(u(y) + λ(An))

)
= h(u(x) + λ(An))− h(u(y) + λ(An))→ 0

as n→∞. Therefore P (x|An)
P (y|An)

→ 1.

2): Suppose to the contrary that there exists r > 0 such that h(r−t)−h(−t) does not converge

to 0 as t → ∞. Let b ∈ (0,∞] denote the limit superior of the sequence. Then there exists a

sequence {λn}∞n=1 such that λn → −∞ and h(r + λn)− h(λn)→ b.

By Contintuity u is continuous, and Richness ensures that is range is unbounded from below

and above. Define q as the unique solution to r = c′(q)− c′(1− q). By Richness there exist x, y

such that P (x|{x, y}) = q. Then FOC implies u(x) − u(y) = r. We assume u(y) = 0 without

loss of generality.
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Because of λn → −∞, we have c′−1(r + λn) → 0. By connectedness of Z, using the

intermediate value theorem argument, for each n we can find zn such that c′−1(r + λn) =

P (x|{x, y, zn}). FOC u(x) + λ({x, y, zn}) = c′(P (x|{x, y, zn})) and u(x) = r imply λn =

λ({x, y, zn}). This leads to

log

(
P (x|{x, y, zn})
P (y|{x, y, zn})

)
= log

(
c′−1(r + λn)

c′−1(λn)

)
=

[
h

(
r + λn

)
− h(λn)

]
→ b

as n→∞. Because b > 0, lim P (x|{x,y,zn})
P (y|{x,y,zn}) > 1 which contradicts Asymptotic Non-Discrimination.

Q.E.D.

A.8 Proof of Proposition 6

Note that when P is deterministic, P (x|A) ≥∗ P (y|B) iff P (x|A) > P (y|B) iff P (x|A) = 1 and

P (y|B) = 0.

equivalence of (1) and (4): When P is deterministic, it induces a deterministic and single-

valued choice function C : A → Z by C(A) = x with P (x|A) = 1. Then Item Acyclicity is

satisfied if and only if the deterministic choice function satisfies the Congruence axiom (Richter,

1966), i.e., there is no sequence of items x1, x2, ..., xn such that

x1 = C(A1) 6= x2 ∈ A1, x2 = C(A2) 6= x3 ∈ A2, · · ·xn = C(An) 6= x1 ∈ An.

As shown by Richter (1966), this is equivalent to the existence of a preference over Z such that

for each A, C(A) is the set of the most preferred elements of A. Because Z is finite and C is

single valued, this is equivalent to the existence of a strict utility function that rationalizes C.

(4) ⇒ (3): Let u be an injective function such that P (x|A) = 1 iff u(x) = maxz∈A u(z).

Suppose that Weak Acyclicity is violated by a sequence P (x1|A1) > P (y1|B1), P (x2|A2) >

P (y2|B2), . . . , P (xn|An) > P (yn|Bn). Pick any j1 = 1, 2, ..., n. Because xj1 = yk1 for some

k1 = 1, 2, ..., n, P (xj1|Bk) = P (yk|Bk) = 0. Also, as Bk = Aj2 for some j2 = 1, 2, ..., n,

1 = P (xj2|Bk) > P (xj1|Bk) = 0. Since n is finite, we can construct a sequence P (xj1|Bk1) <

P (xj2|Bk1), P (xj2|Bk2) < P (xj3|Bk2), · · · , P (xjn|Bkn) < P (xj1|Bkn), which leads to a contradic-
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tion u(xj1) < u(xj2) < · · · < u(xjn) < u(xj1).

(3) ⇒ (2): This immediately follows by definition.

(2)⇒ (1): Suppose that Item Acyclicity is violated by a sequence P (x1|A1) > P (x2|A1), P (x2|A2) >

P (x3|A2), . . . , P (xn|An) > P (x1|An). Then, 0 = P (xk+1|Ak) < P (xk+1|Ak+1) = 1 for each

k = 1, ..., n− 1, and 0 = P (x1|An) < P (x1|A1) = 1 hold. Thus Menu Ayclicity is also violated,

a contradiction. Q.E.D.

A.9 Proof of Proposition 7

Proof of (1): For any φ : R→ R ∪ {∞} that is C1 over φ−1(R), strictly convex, and satisfies

(−1, 0) ⊆ range(φ′) and any cost function c, define the functions Vφ : ∆(A) → R ∪ {∞} and

Vc : ∆(A)→ R ∪ {∞} as follows:

Vφ(p) = inf
ε∈R|A|

∑
x∈A

p(x)[u(x) + εx] +
∑
x∈A

φ(εx)

Vc(p) =
∑
z∈A

(
u(z)p(z)− c(p(z))

)
.

Note that Vφ(p) − Vc(p) =
∑

z∈A

{
c(p(z)) + infεz∈R

[
p(z)εz + φ(εz)

]}
. For any function φ

define the function φ̂ by φ̂(ε) = φ(−ε). Then c(p(z)) + infεz∈R
[
p(z)εz + φ(εz)

]
= c(p(z)) +

infεz∈R−
[
p(z)εz − φ̂(εz)

]
= c(p(z))− supεz∈R

[
p(z)εz − φ̂(εz)

]
To prove the first claim, fix φ and define c to be the convex conjugate of φ̂, i.e., c(q) =

supε{qε − φ̂(ε)}. Then c′(q) = φ̂′(−q) = −φ′−1(−q) for each q ∈ (0, 1) from the assumption

(−1, 0) ⊆ range(φ′). Thus, c is a cost function and Vφ(p)− Vc(p) = 0 for all p.

To prove the second claim, note that if we choose φ so that φ̂ is the convex conjugate of

c, i.e., φ(−ε) = φ̂(ε) =: supq>0{εq − c(q)}, then φ̂′(w) = c′−1(−w), so it is strictly convex

and satisfies (−1, 0) ⊆ range(φ′). By the Fenchel biconjugation theorem (Theorem 12.2 of

Rockafellar, 1970) c is the convex conjugate of φ̂, so likewise Vφ(p)− Vc(p) = 0 for all p.

Proof of (2) : Suppose that P is represented by AVU with limε→∞ φ
′(ε) = 0. Part 1 implies

that P is represented by APU with c(q) = supε{qε − φ(−ε)}, and since c′(q) = −φ′−1(−q) for

each q ∈ (0, 1), limq→0 c
′(q) = −∞.
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Suppose that P is represented by APU with cost c. Part (1) implies that P is represented by

AVU with φ(ε) = supq∈(0,1]{−εq − c(q)}, so φ′(ε) = −c′−1(w) , and limq→0 c
′(q) = −∞ implies

limε→∞ φ
′(ε) = 0. Q.E.D.
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