Firm-to-Firm Trade:

Imports, Exports, and the Labor Market\(^1\)

Jonathan Eaton,\(^2\) Samuel Kortum,\(^3\) and Francis Kramarz,\(^4\)

July 11, 2014

\(^1\)An earlier version of this paper was presented at the 2013 IES Summer Workshop at Princeton, where we benefitted from insightful discussions by Gordon Hanson and John McLaren. Max Perez Leon has provided valuable research assistance on this draft, and Jonathan Libgober on an early draft of this paper. Eaton and Kortum gratefully acknowledge the support of the National Science Foundation under grant numbers SES-0339085 and SES-0820338.

\(^2\)Brown University, Jonathan_Eaton@brown.edu

\(^3\)Yale University, samuel.kortum@yale.edu

\(^4\)CREST(ENSAE), kramarz@ensae.fr
1 Introduction

For a long time economists have exploited readily-available data on bilateral trade flows in different commodities. The aggregate nature of these data guided the first generation of quantitative trade models, which treated the sector as the relevant unit of production and intermediate demand and a representative household as the unit of final demand.

During the last two decades access to firm and plant-level data on export activity revealed the enormous heterogeneity of individual producers even within finely-defined sectors. In particular, many producers in an exporting sector don’t export at all, and those that do export typically sell to only one or a small number of destinations. In response to these observations a new generation of trade models emerged in which the firm rather than the sector was the relevant production unit. This literature continued, however, to treat final demand as emanating from a representative agent. Moreover, while the literature recognized producer heterogeneity in the form of efficiency differences, it continued to treat input use as homogeneous among broad classes of firms.

Economists are now beginning to make use of data generated by customs records, the finest unit of trade transactions. These records reveal not only characteristics of the individual sellers but of their individual buyers as well. Perhaps not surprisingly, buyers are as heterogeneous as sellers, and a typical exporter sells to only one or a small number of buyers. Moreover, data on input use shows that firms are heterogeneous not only in terms of their productivity, size, and export status, but in terms of their use of different types of intermediates and workers. Figure 1 illustrates this heterogeneity in depicting the distribution of the labor share and
unskilled labor share among French manufacturing firms.\footnote{Note that many manufacturing firms have no workers at all. Even if a firm outsources all of its production, if it is the first seller of a manufactured product the firm is classified in manufacturing. For example, a fashion designer who sells clothes that she has designed is classified as a manufacturer even if she hires other firms, either at home or abroad, to make the clothes.}

To capture these additional dimensions of heterogeneity we build a general equilibrium model of product trade through random meetings. Buyers, who may be households looking for final products or firms looking for inputs, meet sellers randomly. At the firm level, the model generates predictions for imports, exports, and the share of labor in production broadly consistent with observations on French manufacturers. At the aggregate level, firm-to-firm trade determines bilateral trade shares as well as labor’s share of output in each country.

The model of firm-to-firm trade is complementary to the recent work of Oberfield (2013). Firm production combines the output of a number of tasks with a firm-specific efficiency level. Each task can be performed by the firm’s employees or by an intermediate input purchased by the firm. The intermediates available to a firm are determined by a matching process, with the firm replacing its own workers to perform a particular task if a cheap enough intermediate is available. The distribution of prices for intermediates is itself determined by the distribution of costs of the other firms that produce them.

Our work relates to several strands in the literature. Recent papers looking at exports and labor markets (although not at imports) include Hummels, Jorgenson, Munch, and Xiang (2011), Felbermayr, Prat, and Schmerer (2008), Egger and Kreickemeier (2009), Helpman, Itskhoki, and Redding (2010), and Caliendo and Rossi-Hansberg (2012). In addition to Oberfield (2013), other theories of networks or input-output interactions include Lucas

2 A Model of Trade through Random Encounters

Consider \( i = 1, 2, \ldots, N \) countries. Producers in these countries make goods by combining labor and intermediates. These goods themselves may be consumed directly or used as intermediates in the production of other goods. Both final and intermediate sales of these goods occur through bilateral random meetings between agents rather than through Walrasian markets.

Each country \( i \) has an endowment \( L_i^l \) of labor of type \( l = 1, 2, \ldots, L \). Each country \( i \) has a measure of suppliers of differentiated goods. The measure of producers who can supply country \( i \) at a unit cost below \( c \) is given by:

\[
\mu_i(c) = \Upsilon_i c^\theta,
\]

where \( \theta > 0 \) and \( \Upsilon_i \geq 0 \). These suppliers could be located in country \( i \) or anywhere else. Below we show how \( \theta \) and \( \Upsilon_i \) relate to underlying technology, labor market conditions, and access to intermediates in different countries of the world, as well as to trade barriers between countries.

A buyer can be either a consumer or a firm using a type of good for some purpose \( k = 1, 2, \ldots, K \). For firms we call these purposes \( tasks \) and for households we call them \( needs \). We treat buyers of either type symmetrically, however, in what follows.
A buyer encounters various suppliers who make perfect substitutes for purpose $k$ of this buyer. The buyer can also have purpose $k$ fulfilled by workers of type $l$, whose wage is $w^l_i$. Worker productivity serving a purpose for a given buyer is given by $Q$, which is drawn from the distribution:

$$F(q) = \Pr[Q \leq q] = e^{-q^{-\phi}},$$

where $0 < \phi \leq \theta$. We assume that each purpose can be served by only one type of worker (so we do not allow different types of workers to compete with each other for serving a purpose). So that all types of workers have a purpose we also assume that the number of types of labor is not greater than the number of purposes ($L \leq K$). But a type of worker may be able to serve multiple purposes. We denote by $\Omega_l$ the set of purposes that a worker of type $l$ can serve. Hence, for $k \in \Omega_l$ we can denote the wage to serve purpose $k$ by $w_{k,i} = w^l_i$, the wage of labor of type $l$. Since the various ways of serving the purpose are perfect substitutes, the buyer is interested in only the cheapest one.\(^2\)

When a meeting occurs between suppliers of a good and a buyer, the buyer has all the bargaining power. Thus, the price of the good to fulfill purpose $k$ is the cost of the lowest-cost supplier. The purpose is then carried out at the lowest-cost, with the buyer either purchasing the good or using workers directly.

We assume that the intensity with which a buyer in country $i$, seeking to fulfill purpose $k$,

\(^2\)While our terminology suggests that purchases are limited by a seller’s ability to contact the relevant buyers, our framework can be interpreted much more broadly. The seller may be aware of a broad range of buyers, but the seller’s product might not be appropriate to many of these buyers’ specific purposes. We can interpret a low $\lambda$ as reflecting a major idiosyncratic component to buyers’ purposes or greater differentiation across producers’ products. Standardization, for example, could be interpreted as raising $\lambda$. 

4
encounters a seller with cost \( c \) is:

\[
e_{k,i}(c) = \lambda_{k,i}e^{-\varphi},
\]

where \( 0 \leq \varphi < \theta \) captures the extent to which a buyer is more likely to encounter a seller who is lower-cost.

Aggregating across the measure of suppliers with different costs, the number of suppliers that a buyer encounters with cost below \( c \) for purpose \( k \) is distributed Poisson with parameter

\[
\rho_{k,i}(c) = \int_0^c e_{k,i}(x)d\mu_i(x)
= \int_0^c \lambda_{k,i}x^{-\varphi}\theta \Gamma_i x^{\theta-1}dx
= \frac{\theta}{\theta - \varphi} \lambda_{k,i} \Gamma_i c^{\theta-\varphi/\theta}.
\]

(3)

Note that this Poisson parameter grows arbitrarily large with \( c \), so that many potential suppliers are available to serve any given buyer.

Consider the cost of the lowest-cost supplier encountered by a given buyer. From the Poisson density, we know that with probability \( \exp[-\rho_{k,i}(c_k)] \) the buyer will encounter no suppliers for purpose \( k \) with cost below \( c_k \). Thus, with probability \( 1 - e^{-\rho_{k,i}(c_k)} \) the buyer will encounter at least one such supplier.

The buyer also has the option of hiring type \( k \) workers directly to serve the purpose. This option will cost less than \( c_k \) if \( w_{k,i}/Q < c_k \), which occurs with probability \( 1 - F(w_{k,i}/c_k) \). Purpose \( k \) will be carried out at a cost below \( c_k \) unless the cost of hiring workers directly and the cost of the best supplier both exceed \( c_k \). Hence, the distribution of the cost faced by the buyer to serve purpose \( k \) is:

\[
G_{k,i}(c_k) = 1 - F(w_{k,i}/c_k)e^{-\rho_{k,i}(c_k)}.
\]
To work out the implications of this distribution for the resulting distribution of production costs, we restrict

$$\theta - \varphi = \phi.$$  

With this restriction, the parameter governing heterogeneity in the distribution of costs of intermediates is the same as the parameter governing heterogeneity in the distribution of worker efficiency \(2\) for a given purpose for a given buyer. In particular, the distribution of the cost to the buyer of fulfilling purpose \(k\) becomes:

$$G_{k,i}(c_k) = 1 - e^{-\Xi_{k,i} c_k^\phi},$$  \hspace{1cm} (4)

where

$$\Xi_{k,i} = \nu_{k,i} + w_{k,i}^{-\phi}$$  \hspace{1cm} (5)

and

$$\nu_{k,i} = \frac{\theta}{\phi} \lambda_{k,i} \gamma_i.$$  \hspace{1cm} (6)

With probability \(w_{k,i}^{-\phi}/\Xi_{k,i}\) the buyer fulfills purpose \(k\) by hiring workers while with probability \(\nu_{k,i}/\Xi_{k,i}\) it purchases a good from the low-cost supplier.

We proceed by showing first how the cost measure \(1\) arises from our model of firm-to-firm trade. We then turn to consumer demand and then to intermediate demand before closing the model in general equilibrium.

2.1 Deriving the Cost Distribution

A potential producer \(j\) from country \(i\), with efficiency \(z_i(j)\), combines up to \(K\) tasks in a Cobb-Douglas constant-returns-to-scale production function. As described above, each task \(k\)
can be performed either by workers who are appropriate for that task or with an intermediate purchased from another firm.

We assume that the measure of potential producers in country \( i \) with efficiency above \( z \) is:

\[
m_i(z) = T_i z^{-	heta}
\]

where \( T_i \) reflects the density of producers and \( \theta \), as above, their dispersion.

The unit cost of a firm depends not only on its overall efficiency \( z \), but on its cost of performing each task \( c = (c_1, c_2, ..., c_K)' \), where each element \( c_k \) of vector \( c \) is distributed independently according to (4).

Given \( z \) and \( c \), a potential producer’s unit cost of delivering to country \( n \) is thus:

\[
c_{ni}(j) = \frac{d_{ni} b(c)}{z},
\]

where

\[
b(c) = \prod_{k=1}^{K} \frac{c_k^{\beta_k}}{b_k},
\]

where the \( b_k \) are constant terms which we will use to eliminate any effect on the number of tasks \( K \) on unit values. The Cobb-Douglas parameters satisfy \( \beta_k > 0 \) and

\[
\sum_{k=1}^{K} \beta_k = 1.
\]

Here \( d_{ni} \geq 1 \) is the amount that has to be sent from country \( i \) to deliver one unit to country \( n \). We set \( d_{ii} = 1 \) for all \( i \).\(^3\)

If all potential producers in \( i \) faced the same vector of costs per task \( c \), the measure that

\(^3\)We bound \( \beta_k > 0 \) (and \( \alpha_k > 0 \) below) to simplify keeping track of the number of sales a firm makes in the accounting below. The restriction could easily be dropped at the expense of complicating this accounting.
could serve market \( n \) at a cost below \( c \) would be:

\[
m_i(d_{ni}b(e)/c) = T_i [d_{ni}b(e)]^{-\theta} c^\theta.
\]

In fact, they will face different costs of carrying out tasks, drawn from (4). To solve for the measure of producers with cost below \( c \), we need to integrate over the distribution of cost per task. In particular, the measure of potential producers from \( i \) that can deliver to market \( n \) at a unit cost below \( c \) is:

\[
\mu_{ni}(c) = \int_{0}^{\infty} \ldots \int_{0}^{\infty} m_i(d_{ni}b(e)/c)dG_{1,i}(c_1)\ldots dG_{K,i}(c_K)
= T_i d_{ni}^{-\theta} c^\theta \prod_{k=1}^{K} \left( \int_{0}^{\infty} \left( \frac{c_k}{b_k} \right)^{-\theta} dG_{k,i}(c_k) \right),
\]

where we have used the fact that the costs are independent across tasks.

The expected contribution of task \( k \) to \( \mu_{ni}(c) \), the integral inside (7), is:

\[
\bar{b}_k \int_{0}^{\infty} c_k^{-\theta \beta_k} dG_{k,i}(c_k)
= \bar{b}_k \int_{0}^{\infty} c_k^{-\theta \beta_k} \xi_{k,i} c_k^{\phi - 1} e^{-\xi_{k,i} c_k^\phi} dc_k
= \bar{b}_k \int_{0}^{\infty} \left( \frac{x}{\xi_{k,i}} \right)^{-\frac{\theta \beta_k}{\phi}} e^{-x} dx
= \bar{c}_{k,i},
\]

where:

\[
\bar{\beta}_k = \frac{\theta}{\phi} \beta_k
\]

and where we have defined \( b_k^\theta \) to eliminate the multiplicative constant emerging from integration.\(^4\)

\(^4\)If \( \bar{\beta}_k < 1 \) then

\[
b_k = \Gamma(1 - \bar{\beta}_k).
\]
Using (8), we can solve (7) as:

$$\mu_{ni}(c) = T_i \Xi d_{ni}^{-\theta} e^\theta,$$

where

$$\Xi_i = \prod_{k=1}^{K} (\Xi_{k,i})^{\hat{\beta}_k}.$$ 

Aggregating across all sources of supply, the measure of potential producers that can deliver a good to market \( n \) at a cost below \( c \) is:

$$\mu_n(c) = \sum_{i=1}^{N} \mu_{ni}(c) = T_n c^\theta$$

where:

$$T_n = \sum_i T_i \Xi d_{ni}^{-\theta}, \tag{9}$$

showing how the parameter \( \Upsilon_n \) posited in (1) relates to deeper parameters of technology, search, and trade costs, as well as to wages, to which we turn below.

Substituting in (6), we can solve for the vector of \( \Upsilon_n \) from the system of equations:

$$\Upsilon_n = \sum_i T_i \Xi d_{ni}^{-\theta} \prod_k \left( \nu_{k,i} + w_{k,i}^{-\phi} \right)^{\hat{\beta}_k}. \tag{10}$$

Given wages and exogenous parameters of the model, the \( \Upsilon_n \) are thus the solution to the set of equations (10). As discussed below, for a solution to exist requires restrictions on parameters.

The measure of potential producers from \( i \) with unit cost below \( c \) in \( n \) is \( T_i \Xi d_{ni}^{-\theta} e^\theta \). The total measure of potential producers with unit cost below \( c \) in \( n \) is \( T_n c^\theta \). Hence the probability that a potential producer selling in \( n \) with unit cost below \( c \) is from \( i \) is:

$$\pi_{ni} = \frac{T_i \Xi d_{ni}^{-\theta}}{\sum_{i'} T_{i'} \Xi d_{ni'}^{-\theta}}$$

which is independent of \( c \).
2.2 Homogeneity

Incorporating the definition (6) into (10) we can write the system of equations determining the $\Upsilon_n$’s as:

$$\Upsilon_n = \sum_i T_i d_{ni}^{-\theta} \prod_k \left( \frac{\theta}{\phi} \lambda_{k,i} \Upsilon_i + w_{k,i}^{-\phi} \right)^{\beta_k} .$$  \hspace{1cm} (11)

An observation is that, together, the $\Upsilon_n$’s are homogeneous of degree one in $T_i$ and $1/\lambda_{k,i}$.\(^5\)

An implication is that proportional increases in all $T_i$’s and $1/\lambda_{k,i}$’s do not affect the share of labor in gross production or bilateral trade shares. The intuition is that an across-the-board improvement in technology raises the measure of potential suppliers in proportion (through the $\Upsilon_n$’s). But if the ability to access these suppliers falls in the same proportion, there is no effect on other outcomes.

2.3 The Aggregate Production Function

We now show what our assumptions about technology imply about the aggregate production function.

To do so, we first show how the term $\nu_{k,i}$ in the expressions above relates to the average price of intermediates for task $k$ in country $i$, $\bar{p}_{k,i}$. Recall that the distribution of the price for an intermediate to perform task $k$ in country $i$ is:

$$H_{k,i}(p) = 1 - e^{-\nu_{k,i}\bar{p}^\phi} ,$$

\(^5\)To see this result, start from a set of $\Upsilon_n$’s that satisfy (11). Imagine, holding fixed all wages, scaling the technology endowment $T_i$ of each country by the factor $s$ while scaling all search parameters $\lambda_{k,i}$ by the factor $1/s$. Given that we started at a solution, we will remain at a solution if each $\Upsilon_n$ increases by the factor $s$.\]
The average of such prices across firms in $i$ is thus

$$\bar{p}_{k,i} = \int_0^\infty p dH_{k,i}(p)$$
$$= \int_0^\infty p\phi u_{k,i} e^{-\nu_{k,i} p^\phi} p^{\phi-1} dp$$
$$= \int_0^\infty \left( \frac{x}{\nu_{k,i}} \right)^{1/\phi} e^{-x} dx$$
$$= \gamma (\nu_{k,i})^{-1/\phi},$$

where

$$\gamma = \Gamma(1 + 1/\phi)$$

Using this result, the share of type $k$ labor in performing task $k$ is:

$$\beta^{L,k} = \beta_k \frac{w_{k,i}^{-\phi}}{\bar{w}_{k,i}}$$
$$= \beta_k \frac{w_{k,i}^{-\phi}}{\nu_{k,i} + w_{k,i}^{-\phi}}$$
$$= \beta_k \frac{w_{k,i}^{-\phi}}{\bar{p}_{k,i}/\gamma}^{-\phi} + w_{k,i}^{-\phi}$$

$$\beta^{L,k} = \beta_k \frac{w_{k,i}^{-\phi}}{\bar{p}_{k,i}/\gamma}^{-\phi} + w_{k,i}^{-\phi}$$

We now show how this expression for the labor share arises by assuming a representative firm with production function:

$$Y_i = \prod_{k=1}^K \left[ \tilde{\gamma} (L_{k,i})^{\phi/(\phi+1)} + (1 - \tilde{\gamma}) (M_{k,i})^{\phi/(\phi+1)} \right]^{\beta_k (\phi+1)/\phi},$$

where $Y_i$ is output and:

$$\tilde{\gamma} = \frac{1}{1 + \gamma^{\phi/(1+\phi)}},$$

For each task $k$ the representative firm can hire labor $L_{k,i}$ at wage $w_{k,i}$ and purchase a composite intermediate $M_{k,i}$ at price $\bar{p}_{k,i}$. 
In equilibrium, the wage $w^t_l$ for type $l$ labor will adjust so that:

$$L^t_i = \sum_{k \in \Omega_t} L_{k,i},$$

where $L^t_i$ is the supply of type $l$ labor and $w_{k,i} = w^t_l$ for $k \in \Omega_t$.

The first-order-conditions for cost minimization deliver:

$$\frac{L_{k,i}}{M_{k,i}} = \left(\frac{(1 - \bar{\gamma})w_{k,i}}{\bar{\gamma} \bar{p}_{k,i}}\right)^{-1/(1+\phi)} = \left(\gamma^{\phi/(1+\phi)}\right)^{-1/(1+\phi)} \left(\frac{w_{k,i}}{\bar{p}_{k,i}}\right)^{-1/(1+\phi)}.$$

Hence

$$\frac{w_{k,i} L_{k,i}}{\bar{p}_{k,i} M_{k,i}} = \left(\gamma^{\phi/(1+\phi)}\right)^{-1/(1+\phi)} \left(\frac{w_{k,i}}{\bar{p}_{k,i}}\right)^{-\phi} = \left(\gamma \frac{w_{k,i}}{\bar{p}_{k,i}}\right)^{-\phi}.$$

Thus the share of labor of type $k$ in country $i$ is:

$$\beta^{L,k} = \beta_k \frac{w_{k,i} L_{k,i}}{w_{k,i} L_{k,i} + \bar{p}_{k,i} M_{k,i}}$$

$$= \beta_k \frac{\left(\gamma \frac{w_{k,i}}{\bar{p}_{k,i}}\right)^{-\phi}}{\left(\gamma \frac{w_{k,i}}{\bar{p}_{k,i}}\right)^{-\phi} + 1}$$

$$= \beta_k \frac{(w_{k,i})^{-\phi}}{(w_{k,i})^{-\phi} + (\bar{p}_{k,i}/\gamma)^{-\phi}},$$

just as above.

### 2.4 Consumer Demand

Denote final consumption spending, on goods or labor services, in country $n$ by $X_n^C$. Consumers devote a share $\alpha_k > 0$ of this spending to fulfilling need $k$, where

$$\sum_{k=1}^{K} \alpha_k = 1.$$

The $\alpha_k$’s for consumers are the analog of the $\beta_k$’s for firms.

In line with producers, a consumer can fulfill a need either with a good or by hiring labor. The lowest cost at which a household can fulfill a need is drawn from the distribution (4).
2.4.1 Final Customers per Firm

The number of potential final customers for need $k$ for a potential producer supplying country $n$ at cost $c$ is distributed Poisson with parameter

$$e_{k,n}(c)L_n = \lambda_{k,n}c^{-\phi}L_n.$$

Having met a final buyer, a seller with unit cost $c$ will make the sale if and only if the buyer hasn’t found a lower-cost means of fulfilling the need, by either a cheaper intermediate or by labor. The probability that a seller with cost $c$ will make the sale is $e^{-\Xi_{k,n}c^\phi}$. Thus, the number of final consumers in $n$ buying from a potential producer with unit cost $c$ for need $k$ is distributed Poisson with parameter $\eta^C_{k,n}(c)$, given by:

$$\eta^C_{k,n}(c) = \lambda_{k,n}L_n c^{-\phi}e^{-\Xi_{k,n}c^\phi},$$

where, recall,

$$\Xi_{k,n} = \frac{\theta}{\phi} \lambda_{k,n} \Upsilon_n + w_{k,n}^{-\phi}.$$

This expression is decreasing in the producer’s unit cost $c$ since a higher cost producer typically has fewer potential customers and because each potential customer is less likely to buy from it.

Since purchases are independent across $k$, the number of total purchases by consumers in $n$ from a producer with unit cost $c$ is distributed Poisson with parameter:

$$\eta^C_n(c) = \sum_{k=1}^{K} \eta^C_{k,n}(c).$$

By the properties of the Poisson distribution, $\eta^C_n(c)$ is also the expected number of customers for a potential producer selling a product at unit cost $c$ in market $n$. 
2.4.2 Consumer Spending

A potential producer with unit cost $c$ in market $n$ expects revenue there of:

$$x_n^C(c) = \sum_{k=1}^{K} \frac{\eta_{k,n}^C(c)}{\lambda_{k,n}^C} \alpha_k \frac{X_n^C}{L_n}$$

$$= \left( \sum_{k=1}^{K} \alpha_k \lambda_{k,n}^C c^{-\phi} e^{-\Xi_{k,n}^C c^\phi} \right) X_n^C. \quad (15)$$

Integrating (15) over the cost distribution of potential producers supplying country $n$, we get:

$$\int_0^\infty x_n^C(c) d\mu_n(c) = X_n^C \int_0^\infty \left( \sum_{k=1}^{K} \alpha_k \lambda_{k,n}^C c^{-\phi} e^{-\Xi_{k,n}^C c^\phi} \right) Y_n \theta c^{\theta-1} dc$$

$$= X_n^C \sum_{k=1}^{K} \alpha_k \left( \int_0^\infty \nu_{k,n} e^{-\Xi_{k,n}^C c^\phi} \phi c^{\phi-1} dc \right)$$

$$= X_n^C \sum_{k=1}^{K} \alpha_k \left( \frac{\nu_{k,n}}{\Xi_{k,n}^C} \right)$$

$$= (1 - \alpha_n^L) X_n^C,$$

where

$$\alpha_n^l = \sum_{k \in \Omega_l} \alpha_k \left( \frac{\nu_{k,n}^{-\phi}}{\Xi_{k,n}^C} \right)$$

is the share of household spending paid directly to labor of type $l$ to perform tasks (where, recall, $\Omega_l$ is the set of tasks that can be performed by labor of type $l$) and:

$$\alpha_n^L = \sum_l \alpha_n^l$$

is the share of all types of labor in final spending. The share of goods in final spending is thus:

$$\Phi_n^C = (1 - \alpha_n^L)$$
2.4.3 Consumer Welfare

We can write the indirect utility of a consumer \( j \) in \( n \) spending \( y_n(j) = y \) and facing costs of performing each need \( k \) given by \( c = (c_1, c_2, ..., c_K)' \) as:

\[
V(j) = V(y, c) = \frac{y}{\prod_{k=1}^{K} c_k^a_k / a_k}.
\]

where \( a_k \) is a constant that will be chosen to eliminate the effect of \( K \) on utility. The expected expenditure \( Y(V) \) needed to obtain expected utility \( V \) in market \( n \) is thus:

\[
Y(V) = V \prod_{k=1}^{K} \left( \frac{1}{a_k} \int_{0}^{\infty} c_k^a_k dG_{k,n}(c_k) \right).
\]

In parallel to the derivation of the cost distribution, the term in parentheses above can be expressed as:

\[
\frac{1}{a_k} \int_{0}^{\infty} (c_k)^{\alpha_k} dG_{k,n}(c_k) = \int_{0}^{\infty} c_k^{\alpha_k - 1} e^{-\xi_{k,n} c_k} dC_k = \int_{0}^{\infty} \left( \frac{x}{\Xi_{k,n}} \right)^{\tilde{\alpha}_k} e^{-x} dx = (\Xi_{k,n})^{-\tilde{\alpha}_k}
\]

where:

\[
\tilde{\alpha}_k = \frac{1}{\phi} \alpha_k.
\]

and \( a_k = \Gamma(1 + \tilde{\alpha}_k) \).

The expected expenditure function is thus:

\[
Y(V) = V \prod_{k=1}^{K} (\Xi_{k,n})^{-\tilde{\alpha}_k}.
\]
We can write the result more compactly as:

\[ Y(V) = \frac{V}{\Xi_n^n}, \]

where

\[ \Xi_n^n = \prod_{k=1}^{K} (\Xi_{k,n})^{\tilde{a}_k} \]

Note how the expenditure required to achieve a given level of utility decreases with each of the \( \nu_{k,n} \).

In calculating welfare, we apply the price index

\[ P_n = (\Xi_n^n)^{-1} \]

to income in country \( n \).

### 2.5 Intermediate Demand

Let \( M_i \) denote the measure of active producers in country \( i \). These firms are the potential customers for intermediates in country \( i \) (since a producer that makes no sales does not buy intermediates). Thus, a seller in country \( i \) with unit cost \( c \) encounters a number of buyers wanting to perform task \( k \) that is distributed Poisson with parameter

\[ e_{k,i}(c) M_i = \lambda_{k,i} c^{-\varphi} M_i. \]

If the intermediate for task \( k \) is supplied at cost \( c \), it will be purchased with probability \( e^{-\Xi_{k,i} c^\phi} \).

Hence, a seller in country \( i \) with unit cost \( c \) sells to a number of firms performing task \( k \) that is distributed Poisson with parameter:

\[ n_{k,i}^I(c) = \lambda_{k,i} M_i c^{-\varphi} e^{-\Xi_{k,i} c^\phi}. \]
Summing across tasks, the total number of sales by a seller with unit cost $c$ in country $i$ is distributed Poisson with parameter:

$$\eta^I_i(c) = \sum_{k=1}^{K} \eta^I_{k,i}(c).$$

By the properties of the Poisson distribution, $\eta^I_i(c)$ is also the expected number of customers for a potential producer selling an intermediate at unit cost $c$ in market $i$.

Defining $y^M_i$ as average value of production per producer in $i$, a firm with cost $c$ therefore expects revenue from intermediate sales in $i$ of:

$$x^I_i(c) = \sum_k \beta_k \eta^I_{k,i}(c) y^M_i = \left( \sum_k \beta_k \lambda_{k,i} c^{-\varphi} e^{-\Xi_{k,i} c^\phi} \right) Y^M_i,$$

since $Y^M_i = M_i y^M_i$.

Aggregating $x^I_i(c)$ over the cost distribution for firms selling in country $i$, total intermediate sales there are:

$$X^I_i = \int_0^\infty x^I_i(c) d\mu_i(c) = Y^M_i \int_0^\infty \left( \sum_k \beta_k \lambda_{k,i} c^{-\varphi} e^{-\Xi_{k,i} c^\phi} \right) d\mu_i(c)$$

$$= Y^M_i \sum_k \beta_k \left( \int_0^\infty \nu_{k,i} c^{-\varphi} e^{-\Xi_{k,i} c^\phi} \theta \varphi^{-1} dc \right)$$

$$= Y^M_i \sum_k \beta_k \nu_{k,i} \Xi_{k,i}^{-\varphi} \phi^{-1} dc$$

$$= Y^M_i \sum_k \beta_k \nu_{k,i} \Xi_{k,i}^{-\varphi} \phi^{-1} dc$$

$$= (1 - \beta^L_i) Y^M_i,$$

where

$$\beta^L_i = \sum_{k \in \Omega_i} \beta_k \left( 1 - \frac{\nu_{k,i}}{\Xi_{k,i}} \right) = \sum_{k \in \Omega_i} \beta_k \frac{w_{k,i}^{-\phi}}{\nu_{k,i} + w_{k,i}^{-\phi}},$$

17
is the share labor of type \( l \) in production costs and:

\[
\beta^L_i = \sum_l \beta^l_i
\]

is the total share of labor in production costs. The share of intermediates in total costs is thus:

\[
\Phi^I_i = 1 - \beta^L_i.
\]

Note how the labor share depends not only on wages but on the terms \( \nu_{k,i} = \frac{\alpha}{\phi} \lambda_{k,i} Y_i \). Greater access to intermediates (higher \( \lambda_{k,i} \)’s) or a reduction in trade barriers (lowering \( Y_i \)) act to reduce the labor share. Figure 2 shows evidence that labor shares have fallen in many countries during a period of trade expansion.

3 Aggregate Relationships

We now turn to the solution of the model, first solving for equilibrium in manufacturing production, given wages, and then to labor-market equilibrium, which determines those wages.

3.1 Manufacturing Equilibrium

Total manufacturing production in country \( i \) equals total revenue in supplying consumption goods and intermediates around the world:

\[
Y^M_i = \sum_{n=1}^{N} \int_{0}^{\infty} \left[ x^C_n(c') + x^I_n(c') \right] d\mu_n(c')
\]

\[
= \sum_{n=1}^{N} \int_{0}^{\infty} \left[ x^C_n(c') + x^I_n(c') \right] \pi_{ni} d\mu_n(c')
\]

\[
= \sum_{n=1}^{N} \pi_{ni} \left[ \Phi^C_n X^C_n + \Phi^I_n Y^M_n \right].
\]
We can write this result in matrix form as:

\[ Y^M = \Pi (\Phi^C X^C + \Phi^I Y^M) \]

where:

\[
Y^M = \begin{bmatrix}
Y^M_1 \\
Y^M_2 \\
\vdots \\
Y^M_N 
\end{bmatrix}, \quad X^C = \begin{bmatrix}
X^C_1 \\
X^C_2 \\
\vdots \\
X^C_N 
\end{bmatrix}
\]

\[
\Phi^j = \begin{bmatrix}
\Phi_{11}^j & 0 & \ldots & 0 & 0 \\
0 & \Phi_{22}^j & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \Phi_{NN-1}^j & 0 \\
0 & 0 & \ldots & 0 & \Phi_{NN}^j 
\end{bmatrix}
\]

and:

\[
\Pi = \begin{bmatrix}
\pi_{11} & \pi_{21} & \ldots & \pi_{N-1,1} & \pi_{N1} \\
\pi_{12} & \pi_{22} & \ldots & \pi_{N-1,2} & \pi_{N2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\pi_{1,N-1} & \pi_{2,N-1} & \ldots & \pi_{N-1,N-1} & \pi_{NN-1} \\
\pi_{1N} & \pi_{2N} & \ldots & \pi_{N-1,N} & \pi_{NN} 
\end{bmatrix}
\]

We can then solve for \( Y^M \):

\[ Y^M = (I_N - \Pi \Phi^I)^{-1} \Pi \Phi^C X^C \]

where \( I_N \) is the \( N \times N \) identity matrix.

### 3.2 Labor-Market Equilibrium

With balanced trade, final spending on manufactures in country \( i \), \( X_i^C \), is equal to wage income \( Y_i^L \), which corresponds in this model to GDP:

\[ X_i^C = Y_i^L = \sum_l u_i^l L_i^l. \]
Equilibrium in the market for labor of type \( l \) in country \( i \) solves the expression:

\[
w_i^l L_i^l = \alpha_i^l Y_i^L + \beta_i^l Y_i^M.
\]

These sets of equations, for each \( l \) and \( i \), determine \( w_i^l \).

### 3.3 Homogeneity

Returning to our discussion of homogeneity above, if all labor endowments \( L_i^l \) are scaled by the factor \( s \), equilibrium wages and prices remain unchanged only if the \( T_i \) and \( 1/\lambda_{k,i} \) are also scaled by the factor \( s \). If we fail to scale down the search efficiency parameter \( \lambda_{k,i} \) a larger market has lower-priced intermediates (relative to wages) and hence lower labor shares.

### 4 Firm-Level Implications of the Model

While delivering implications for aggregate outcomes such as trade shares, wages, and prices, our framework also delivers implications for firm entry and the firm-size distribution, which we now explore.

The number of buyers for a firm selling in \( n \) at cost \( c \) is distributed Poisson with parameter:

\[
\eta_n(c) = \eta_n^G(c) + \eta_n^I(c) = (L_n + M_n) e^{-\sum_{k=1}^{K} \lambda_{k,n} e^{-\xi_{k,n} c}}.
\]

These customers may be buyers of final goods or intermediates to perform any need.

Now consider worldwide sales of a producer in country \( i \). Given \( c \), it gets a Poisson draw of customers in each market \( n \). Its production cost \( c \) is fixed, but due to trade costs, its cost of delivery to country \( n \) is \( c d_{ni} \). The total number of customers around the world for a producer
from market $i$ with unit cost $c$ there is therefore distributed Poisson with parameter:

$$
\eta_i^W(c) = \sum_{n=1}^{N} \eta_{ni}(cd_{ni})
$$

$$
= \sum_{n=1}^{N} (L_n + M_n)(d_{ni})^{-\varphi} c^{-\varphi} \sum_{k=1}^{K} \lambda_{k,n} e^{-\Xi_{k,n}(d_{ni})^{-\varphi} c^\varphi}.
$$

### 4.1 Measure of Producers and Sellers

In an open economy the set of firms selling in a country is not the same as the set producing there, so $M_n$ does not correspond to $N_n$. Here we solve for the measure of producers.

To appear as a firm a potential producer has to sell somewhere. The probability that a potential producer from source $i$ with unit cost $c$ fails to make a sale anywhere is $\exp(-\eta_i^W(c))$. Integrating over the cost distribution of potential producers in source $i$ (those from $i$ that can deliver to $i$ at cost $c$):

$$
M_i = \int_0^\infty (1 - e^{-\eta_i^W(c)}) d\mu_{ii}(c)
$$

$$
= T_i \Xi_i \int_0^\infty (1 - e^{-\eta_i^W(c)}) \theta c^{\theta-1} dc.
$$

Since $\eta_i^W(c)$ itself depends on the measure of customers for intermediates $M_n$ in each market $n$, we need to iterate toward a solution for all the $M_i$’s.

Having solved for the $M_i$’s, the measure of firms selling in $n$ can be calculated as

$$
N_n = \int_0^\infty (1 - e^{-\eta_n(c)}) d\mu_n(c)
$$

$$
= \Upsilon_n \int_0^\infty (1 - e^{-\eta_n(c)}) \theta c^{\theta-1} dc.
$$

We can evaluate this integral numerically to determine the relationship between entry $N_n$ and market size, $L_n + M_n$. 

21
The measure of firms from $i$ exporting to $n$ is

$$N_{ni} = \pi_{ni} N_n = \int_0^\infty (1 - e^{-\eta_n(c)}) d\mu_{ni}(c).$$

Thus the fraction of firms from $i$ that export to $n$ is $N_{ni}/M_i$. The fraction of firms from $i$ that sell domestically is $N_{ii}/M_i$, which will typically be below 1 (although perhaps close to 1).

### 4.2 The Distribution of Buyers per Firm

We now turn to the size distribution of firms selling in country $n$, with size measured by number of customers.\(^6\) Given their unit cost $c$ in market $n$, this distribution is the same for firms from any source $i$.

Let $S_n$ be the integer-valued random variable for the number of customers in $n$ that a firm sells to. From the Poisson distribution, the probability that a firm with cost $c$ has $s$ customers is

$$\Pr[S_n = s | c] = \frac{e^{-\eta_n(c)} [\eta_n(c)]^s}{s!},$$

for $s = 0, 1, \ldots$. We can integrate over the cost distribution and condition on $S_n > 0$ (since if $S_n = 0$ the firm would not be among those observed to sell in $n$) to get

$$\Pr[S_n = s | S_n > 0] = \frac{1}{N_n} \int_0^\infty \frac{e^{-\eta_n(c)} [\eta_n(c)]^s}{s!} d\mu_n(c)$$

$$= \frac{\gamma_n}{N_n s!} \int_0^\infty e^{-\eta_n(c)} [\eta_n(c)]^s \theta e^{-\theta c} dc, \quad (17)$$

for $s = 1, 2, \ldots$.

---

\(^6\)If a customer is another firm, then the size of the customer firm will also factor in to the size of the selling firm. Since such variation is totally random, not depending on cost of the selling firm, we ignore it for now.
The expected number of buyers per active firm is

\[ E[S_n|S_n > 0] = \frac{1}{N_n} \int_0^\infty \eta_n(c) d\mu_n(c) \]

\[ = \frac{L_n + M_n}{N_n} \int_0^\infty e^{-c} \left( \sum_{k=1}^K \nu_{k,n} e^{-\xi_{k,n} c^\alpha} \right) \theta Y_n c^{\theta - 1} dc \]

\[ = \frac{L_n + M_n}{N_n} \sum_{k=1}^K \nu_{k,n} \frac{\xi_{k,n}}{\xi_{k,n}} \int_0^\infty e^{-x} dx \]

\[ = \frac{L_n + M_n}{N_n} \sum_{k=1}^K \nu_{k,n} \frac{\xi_{k,n}}{\xi_{k,n}}. \]

Since \( \nu_{k,n}/\Xi_{k,n} \) is the probability that a potential customer purchases a good for a purpose (rather than hiring labor), the summation on the right hand side is then expected purchases per potential customer. Thus, expected sales per firm is the product of the measure of potential customers, \( L_n + M_n \), in market \( n \) and the expected number of goods purchased per potential customer, all divided by the measure of sellers in that market.

## 5 A Numerical Example

****THIS SECTION NOT UPDATED*****To illustrate some implications of the model we have solved for the equilibrium in a simple symmetric two-country example with three types of labor. Table 1 reports the parameter values we have used. Specifically, tasks performed by “nonproduction” workers cannot be outsourced \((\lambda = 0)\), while those performed by “skilled” workers are difficult to outsource \((\lambda = 0.01)\) and those performed by “unskilled workers are easy to outsource \((\lambda = 1)\).

We solve for the equilibrium of the model under different assumptions about trade barriers...
$d$, ranging from $d = 16$, which essentially delivers autarky, to $d = 1$ (frictionless trade). Table 2 reports the results for various magnitudes of interest. Note how the skill premium rises with lower trade barriers, as producers and consumers find cheaper products to replace unskilled workers. Even though prices fall with trade barriers, the real wage of unskilled workers declines (in both countries) as trade barriers decline. Skilled workers, who are less likely to be replaced by manufactured intermediates than are unskilled workers, experience a modest increase in their real wage. Overall welfare, of course, rises.

Table 2 also shows that manufacturing value added falls relative to manufacturing gross production as trade barriers decline. The reason is that with lower trade costs, imported manufactured goods are more likely to replace skilled and unskilled production workers in some tasks, making manufacturing production more round-about. This mechanism is one interpretation of the secular decline in labor shares (in the vast majority of countries) shown in Figure 2.

---

The first two rows of Table 2 consider nonproduction tasks (which have a 40 percent share in manufacturing output, see Table 1) to be outsourced to the service sector, with service-sector output being the value add of nonproduction workers. In this interpretation, the value added share of manufacturing gross production can be no more than 60 percent. Had we instead interpreted these task as being carried out by nonproduction labor hired directly by manufacturers, the labor share of manufacturing gross production could be as high as 100 percent (for a firm with no production tasks outsourced). These different interpretations do not matter for other implications of the model as they relate only to the accounting question of whether manufacturers are integrated or not with the suppliers of nonproduction tasks.
References


