THE IMPORTANCE OF BEING HONEST

Nicolas Klein*

This version: July 3, 2014

Abstract

This paper analyzes the case of a principal who wants to give an agent proper incentives to explore a hypothesis which can be either true or false. The agent can shirk, thus never proving the hypothesis, or he can avail himself of a known technology to produce fake successes. This latter option either makes the provision of incentives for honesty impossible, or does not distort its costs at all. In the latter case, the principal will optimally commit to rewarding later successes even though he only cares about the first one. Indeed, after an honest success, the agent is more optimistic about his ability to generate further successes. This in turn provides incentives for the agent to be honest before a first success.

Keywords: Dynamic Moral Hazard, Continuous-Time Principal-Agent Models, Optimal Incentive Scheme, Experimentation, Bandit Models, Poisson Process, Bayesian Learning.

JEL Classification Numbers: C79, D82, D83, O32.

*Université de Montréal and CIREQ. Mailing address: Université de Montréal, Département de Sciences Économiques, C.P. 6128 succursale Centre-ville; Montréal, H3C 3J7, Canada, kleinnic@yahoo.com, phone: 514-343-7908.
1 Introduction

Incentive problems frequently arise because an agent’s actions can only be imperfectly monitored. The literature on Moral Hazard has been trying to design contracts or mechanisms inducing an agent to do what he is supposed to do.\(^1\) Some papers have extended the analysis to contexts that are dynamic or involve agents having multiple tasks to perform.\(^2\) In Bergemann & Hege (1998, 2005), as well as in Hörner & Samuelson (2013), an agent can shirk or exert effort. By exerting effort, he learns about the underlying payoff-relevant state of the world. In the present paper, the principal needs to be concerned about preventing the agent not only from shirking, but from misdirecting his efforts also. In order to do so, I show that the principal can use the properties of the agent’s learning process as a lever to give incentives. In fact, the scheme I construct, which heavily relies on the parties’ risk neutrality as it involves very high payments in very unlikely events, even makes the undesirable action so unattractive that it becomes dominated by the outside option of shirking, leading to the same payoffs as if the undesirable action were not there.

The aspect of learning and experimentation has been explored in the economics literature in a variety of contexts, analyzing situations in which economic decision makers face a trade-off between optimally exploiting the information they currently have versus engaging in the exploration of new information. This latter option might well involve doing something myopically suboptimal given their current information; yet, it might give them additional information that can then potentially be parlayed into higher payoffs come tomorrow. In my setting, it will turn out to be advantageous for the principal to design his incentive scheme so as to make information valuable to the agent, in order to induce him to take the desired action.

The canonical framework to analyze the trade-off between exploration and exploitation is the bandit model, which was first formulated by Robbins (1952) and introduced into economics by Rothschild (1974).\(^3\) Beginning with Bolton & Harris (1999), the literature has started also to consider strategic interaction in bandit models, in the sense that one player’s experimentation, by being observable to other actors, benefits them as well, see e.g. also Keller, Rady, Cripps (2005), Keller & Rady (2010), Klein & Rady (2011), Klein

\(^1\)Seminal papers in this now quite vast literature are e.g. Holmström (1979), Shavell (1979), or Grossman & Hart (1983). A risk neutral agent that is protected by limited liability first appears in the context of hidden information in Sappington (1983); Innes (1990) obtains stronger results in a hidden-action setting.

\(^2\)See e.g. Holmström & Milgrom (1987), where an agent controls the drift rate of a Brownian motion. The problem of an agent performing multiple tasks, which can be monitored more or less accurately, is analyzed by Holmström & Milgrom (1991).

However, in so doing, this literature has generally abstracted from agency problems that would arise if an agent had to choose whether to explore or to exploit on the principal’s behalf, and his action choice was not fully observable. Such a constellation may well arise in a myriad of contexts, e.g. when a funding board wants to incentivize a researcher to investigate a certain hypothesis, or when an investor wants to consult an expert concerning the quality of an asset, or when a regulator seeks to design an evaluation scheme for physicians (see Fong, 2009).

In many of these instances, when designing his incentive scheme, the principal has to worry not only about the agent’s possibly being lazy. Indeed, the researcher might manipulate his data, the expert might fabricate his evidence, and physicians might only take on patients that are not that sick in the first place. In short, the agent may not just shirk exerting effort, he might cheat by misdirecting his efforts as well.

In this paper, I shall analyze the problem of a principal who is interested in finding out about the initially unknown state of the world. To this end, he wants to give incentives to an agent to engage in experimentation. In particular, it is assumed that at any point in time, the agent has a choice between two projects. One project yields apparent “successes,” which are not informative about the state of the world and hence not valuable to the principal, according to a state-independent commonly known distribution. The other project, which is socially valuable, involves the investigation of a hypothesis which is uncertain. It can only ever yield a success if the hypothesis is in fact true. It is furthermore assumed that the principal’s interest in the matter is in finding out that the uncertain hypothesis is true; yet, he cannot tell, or cannot contract upon, whether a success he observes is a true success or the result of cheating. Moreover, the agent could also shirk exerting effort, which gives him some private flow benefit, but in which case he will never achieve an observable success. The agent’s effort choice is also unobservable to the principal. This paper shows how to implement honest investigation of the uncertain hypothesis, subject to the afore-mentioned informational restrictions. Specifically, the principal’s objective is to minimize the wage costs of implementing honesty up to the first success with probability 1 on the equilibrium path, given that he only observes the occurrence, and timing, of successes; he does not observe whether a given success was a cheat or was achieved by honest means.

As is well known from the principal-agent literature, when his actions cannot easily be monitored, an agent’s pay must be made contingent on his performance, so as to provide proper incentives for him to exert effort. Thus, the agent will get paid a substantial bonus if, and only if, he proves his hypothesis. While this may well provide him with the necessary incentives to work, unfortunately, it might also tempt him to cheat, and to try and seek a fake success. That the mere provision of incentives to exert effort is not sufficient to induce
agents to engage in the pursuit of innovation is shown empirically by Francis, Hasan and Sharma (2009). Using data from ExecuComp firms for the period 1992–2002, they show that the performance sensitivity of CEO pay has no impact on a firm’s innovation performance, as measured by the number of patents taken out, or by the number of citations to patents.

In case even the investigation of a correct hypothesis yields breakthroughs at a lower frequency than cheating, honesty is not implementable at all, i.e. it is impossible to get the agent to pursue a low-yield high-risk project. In the more interesting case when the high-risk project is also the high-yield project, I show by what schemes the principal can make sure that the agent is always honest up to the first breakthrough at least.

While investigating the hypothesis, the agent increasingly grows pessimistic about its being true as long as no breakthrough arrives. As an honest investigation can never show a false hypothesis to be true, all uncertainty is resolved at the first breakthrough, and the agent will know the state of the world for sure. If the agent did not have the option to cheat, the principal could simply offer the agent a reward for the first success, with the reward chosen high enough to make the agent just willing to put in the effort. Yet, once the agent is so pessimistic about the prospects of honesty that the expected arrival rate of a first success is higher when cheating, this scheme could no longer implement honesty.

The nub is now that, in order to keep the agent honest, the principal will want to devise a scheme that makes the production of information valuable for the agent as well. Whereas there may be many means of achieving this goal, in one optimal scheme I identify, the principal will reward the agent only for the \((m+1)\)-st breakthrough, with \(m\) being chosen appropriately large, in order to deter him from cheating, which otherwise might seem expedient to him in the short term.\(^4\) Whereas the principal has no learning motive since he is only interested in the first breakthrough the agent achieves by honest means, making information valuable to the agent in this manner provides a judicious way of giving incentives. Indeed, the first breakthrough makes the agent more optimistic about his prospects of achieving \(m\) future successes only if this first breakthrough is achieved by honest means.

All optimal schemes share the property that cheating is made so unattractive that it is dominated even by shirking.\(^5\) Hence, the agent only needs to be compensated for his

\(^4\)Think e.g. of an investor who is wary of potentially being presented with fake evidence purporting to prove that an asset is good. Therefore, he will write a contract committing himself only to pay the analyst for the \((m+1)\)-st piece of evidence presented, even though, in equilibrium, the agent is known to be honest with probability 1, so that the first piece of evidence presented already constitutes full proof that the asset is good. This commitment only to reward the \((m+1)\)-st breakthrough is in turn what keeps the agent honest in equilibrium.

\(^5\)Note that the (opportunity) costs of cheating and of being honest are the same, namely the forgone benefit of being lazy. If cheating were (much) cheaper than honesty, this conclusion would of course no
forgone benefit of being lazy; put differently, the presence of a cheating action creates no distortions in players’ values, i.e. the payoffs to the principal and the agent are identical, whether the agent has access to the cheating technology or not.\endnote{This is because both parties’ payoffs are 0 after the game stops. Therefore, from an \textit{ex ante} perspective, the costs to the parties are the same, whether a given sum is transferred via an immediate lump-sum payment and the game is stopped right away, or whether there is a continuation game with the same expected payments. Thus, requiring additional breakthroughs does not entail any waste of effort.}

As I am abstracting from the possibility of the agent’s making an honest mistake, later breakthroughs have no intrinsic value for the principal. Indeed, they serve no other purpose beyond, as it were, certifying the quality of the first breakthrough. Yet this certification via later breakthroughs is costless to the principal; hence, in case an honest investigation of a correct hypothesis yields breakthroughs at a higher rate than manipulation, the principal cannot gain by making use of other, arguably more natural, certification technologies, as e.g. having a second agent check the first agent’s breakthrough, or having a system by which an agent’s cheating could be detected with some positive probability. Indeed, the principal’s willingness to pay for such a technology would be zero in this case.

Still, a distortion occurs when the principal can additionally choose the end date of the interaction conditional on no breakthrough having obtained. Indeed, in this case, he will stop the project inefficiently early. The reason for this is that, as in Hörner & Samuelson (2013), future rewards adversely impact today’s incentives: If the agent is paid a lot for achieving his first success tomorrow, he is loath to “risk” having his first success today, thereby forgoing the possibility of collecting tomorrow’s reward. To overcome this reticence, the principal needs to pay the agent an extra \textit{procrastination rent}, which is increasing in the amount of time remaining. This in turn makes it less attractive for the principal to carry on investigating the project longer. This distortion, however, could easily be overcome if the principal could hire different agents sequentially, as a means of counteracting the dynamic allure of future rewards. If agents could be hired for a mere instant, then, in the limit, the principal would end the project at the first-best optimal stopping time.

Now, the threshold number of successes m will be chosen high enough that even for an off-path agent, who has achieved his first breakthrough via manipulation, m breakthroughs are so unlikely to be achieved by cheating that he prefers to be honest after his first breakthrough. This puts a cheating off-path agent at a distinct disadvantage, as, in contrast to an honest on-path agent, he has not had a discontinuous jump in his belief. Thus, only an honest agent has a high level of confidence about his ability to navigate the continuation scheme devised by the principal; therefore, the agent will want to make sure he only enters the continuation regime after an honest success. Indeed, an agent who has had an honest
success will be more optimistic about being able to curry favor with the principal by producing many additional successes in the future, while a cheating off-path agent, fully aware of his dishonesty, will be comparatively very pessimistic about his ability to produce a large number of future successes in the continuation game following the first success. Hence, the importance of being honest arises endogenously as a tool for the principal to give incentives in the cheapest possible way, as this difference in beliefs between on-path and off-path agents is leveraged by the principal, who enjoys full commitment power.

Thus, I find that even if later breakthroughs are of no intrinsic value to the principal, it is still optimal for him to tie rewards to consistently outstanding performance as evidenced by a large number of later breakthroughs produced in quick succession. This finding is consistent with empirical observations emphasizing that commitment to more far-sighted compensation schemes is crucial in spurring innovation. Thus, Francis, Hasan, Sharma (2009) show that while performance sensitivity of CEO pay has no impact on innovation output, skewing incentives toward longer-term performance measures via vested and unvested options does entail a positive and significant impact on both patents and citations to patents. Examining the impact of corporate R&D heads’ incentives on innovation output, Lerner & Wulf (2007) find that long-term incentives lead to more extensively cited patents, while short-term incentives do not seem to have much of an impact.

The key to making cheating unattractive for the agent lies in giving a low value to a dishonest off-path agent after a first breakthrough, given the promised continuation value to the on-path agent. While paying only for the \((m+1)\)-st breakthrough ensures that off-path agents do not persist in cheating in the continuation game after a first ‘success’, they will nevertheless continue to update their beliefs. Thus, they might be tempted to switch to shirking once they have grown too pessimistic about the hypothesis, a possibility that gives them a positive option value. Since, in my model, the agent never makes an ‘honest mistake’, and later breakthroughs are thus of no intrinsic value to the principal, one way for the principal to handle this challenge is for him to end the game suitably soon after the first breakthrough, thereby curtailing the time the agent has access to the safe arm, and thus correspondingly reducing the option value associated with it. Then, given this end date, the reward for the \((m+1)\)-st breakthrough is chosen appropriately to give the intended continuation value to the on-path agent.

The rest of the paper is set up as follows: Section 2 reviews some relevant literature; Section 3 introduces the model; Section 4 deals with the provision of a certain continuation value; Section 5 analyzes the optimal mechanisms before a first breakthrough; Section 6 considers when the principal will optimally elect to stop the project conditional on no success having occurred, and Section 7 concludes. Technical details of the construction of
the continuation scheme are dealt with in Appendix A; Appendix B deals with the agent’s problem before a first breakthrough, and proofs not provided immediately in the text are given in Appendix C.

2 Related Literature

Holmström & Milgrom (1991) analyze a case where, not unlike in my model, the agent performs several tasks, some of which may be undesirable from the principal’s point of view. The principal may be able to monitor certain activities more accurately than others. They show that in the limiting case with two activities, one of which cannot be monitored at all, incentives will only be given for the activity which can in fact be monitored; if the activities are substitutes (complements) in the agent’s private cost function, incentives are more muted (steeper) than in the single-task case. While their model could be extended to a dynamic model with the agent controlling the drift rate of a Brownian Motion signal, the learning motive I introduce fundamentally changes the basic trade-offs involved. Indeed, in my model, the optimal mechanisms extensively leverage the fact that only an honest agent will have had a discontinuous jump in his beliefs.

Bergemann & Hege (1998, 2005), as well as Hörner & Samuelson (2013), examine a venture capitalist’s provision of funds for an investment project of initially uncertain quality; the project is managed by an entrepreneur, who might divert the funds to his private ends. The investor cannot observe the entrepreneur’s allocation of the funds, so that, off path, the entrepreneur’s belief about the quality of the project will differ from the public belief. If the project is good, it yields a success with a probability that is increasing in the amount of funds invested in it; if it is bad, it never yields a success. These papers differ from my model chiefly in that there is no way for the entrepreneur to “fake” a success; any success that is publicly observed will have been achieved by honest means alone.

In Halac, Kartik, and Liu (2012), the agent (entrepreneur) can be of a good type or a bad type. If the agent is of the good type, effort is more productive, in that it yields a success with a higher probability, provided the project is good. If the project is bad, it never yields a success, whatever the agent’s type may be. The agent privately knows his type; as in Bergemann & Hege (1998, 2005) and Hörner & Samuelson (2013), there is a common prior belief that the project is good. Halac, Kartik, and Liu (2012) show that the principal, who enjoys full commitment power, deals with the additional adverse-selection problem at the outset by offering a menu of contracts effecting the separation of the different types.

In Guo (2014), a principal has to delegate to an agent the task of choosing between a risky action and a safe action over time. While his action choices, as well as the outcomes of these choices, are observable, the agent privately knows his prior belief. It is common knowledge that the agent has a stronger preference for the risky action than the principal. While monetary transfers between the principal and the agent are ruled out, the principal, who enjoys full commitment power, chooses a subset of admissible policies from which the agent then picks one. Guo (2014) shows that, in the optimal contract, the agent can switch between safe and risky as long as the principal’s calibrated belief stays above a certain threshold; below this threshold, the agent is forced to play safe.

Fong (2009) explicitly considers the possibility of cheating. Specifically, she analyzes optimal scoring rules for surgeons who may engage in “risk selection.” Indeed, the danger is that, in the hope of distorting a publicly observable performance measure, they might seek out patients who are not very sick in the first place, while shunning high-risk patients. In her model, surgeons are fully informed about their type from the get-go; i.e. they know if they are a good or a bad surgeon, and adapt their behavior accordingly. The optimal contract for the good surgeon is characterized by four regions, namely “firing,” high responsiveness to the public signal, low responsiveness, and “tenure.” In my model, by contrast, the agent is initially no better informed than the principal; only as the game progresses will he possibly privately learn something about how expedient honesty is likely to be, a process that the principal fully anticipates on the equilibrium path. Moreover, in Fong’s (2009) model, there are no direct monetary payments from the principal to the agent; rather, the principal gives incentives by continuously deciding whether the surgeon may continue to practice. In my model, by contrast, the principal can offer monetary payments to the agent which condition on the history he observes. Furthermore, Fong (2009) assumes that agents have to bear a (type-dependent) exogenous flow cost for cheating. In my model, I show that even in the absence of such a cost, the principal can make cheating so unattractive that the option to cheat does not lead to any distortions in players’ payoffs.

One paper that is close in spirit to mine is Manso (2011), who analyzes a two-period model where an agent can either shirk, try to produce in some established manner with a known success probability, or experiment with a risky alternative. He shows that, in order to induce experimentation, the principal will optimally not pay for a success in the first period, and might even pay for early failure. This distortion is an artefact of the discrete structure of the model and the limited signal space; indeed, in Manso’s (2011) model, early failure can be a very informative signal that the agent has not exploited the known technology, but has rather chosen the risky, unknown alternative. By contrast, while confirming Manso’s (2011)

8Ederer (2013) analyzes a variant of this model with two agents and two different risky arms.
central intuition that it is better to give incentives through later rewards, I show that, in continuous time, the presence of the alternative production method does not distort the players’ payoffs. Now indeed, arbitrary precision of the signal can be achieved by choosing a critical number of successes that is high enough, as will become clear infra. Moreover, the dynamic structure allows me to analyze the principal’s optimal stopping time.

Considering very general learning processes, Bhaskar (2012) shows that in dynamic moral hazard settings with learning, an agent is always in a position to exploit the misalignment of beliefs following a deviation. This in turn makes deviations more attractive, and hence incentive provision more expensive, than in a static setting. By virtue of an effect that is somewhat reminiscent of our procrastination rent, he furthermore shows that, in a dynamic setting, high-powered future incentives aggravate the incentive problem today, by increasing the agent’s temptation to seek to exploit a misalignment in beliefs. Therefore, to counteract the dynamic allure of future incentives, the agent has to be offered higher-powered incentives today.

In Garrett & Pavan (2012), the principal can hire an agent from a pool of possible agents, whom he can fire at any time. The agent’s productivity evolves over time and is his private information. The principal observes the profit increment the agent produces in each period; it amounts to the sum of the agent’s unobservable effort level, his productivity and a shock. They show that the principal’s firing policy becomes more lenient over time.

In Barraquer & Tan (2011), as market competition increases, agents tend to congregate in those projects that are most informative about their underlying ability, making for a potential source of inefficiency. In their model, the market observes in which project a success has been achieved. In my model, this is not observed by the principal; on the contrary, it is his goal to design incentives in such a way as to induce the agent to use the informative method of investigation.

Board & Meyer-ter-Vehn (2013) analyze the case of a firm selling a product of a quality that is uncertain to consumers and that changes based on the firm’s investment according to a Poisson process. Product quality in turn determines the Poisson arrival rate of information to consumers, who update their beliefs based on the frequency of such signals. In my model, the principal will give incentives by committing to insist on many successes in a short amount of time. Bonatti & Hörner (2012) analyze the problem of an agent who is motivated by career concerns and is supposed to exert effort in order to achieve a one-off breakthrough.9

In my model, the agent is privately informed about his actions, even though the principal correctly anticipates them on the equilibrium path. Strategic experimentation in the presence of private information is analyzed by Rosenberg, Solan, Vieille (2007), as well as Murto & Välimäki (2011), who consider the case where actions are observable, while outcomes are not. Bonatti & Hörner (2011) analyze the case where actions are not observable, while outcomes are. Strulovici (2010) considers the case in which multiple agents vote on whether collectively to experiment or not. He *inter alia* shows that if players’ payoffs are only privately observed in his setting, nothing changes with respect to the baseline case in which all information is public.

Rahman (2010) deals with the question of implementability in dynamic contexts, and finds that, under a full support assumption, a necessary and sufficient condition for implementability is for all non-detectable deviations to be unprofitable under zero transfers. The issue of implementability turns out to be quite simple in my model, and is dealt with in Proposition 3.1.

3 The Model

There is one principal and one agent, who are both risk neutral. The agent operates a bandit machine with three arms, i.e. one safe arm yielding him a private benefit flow of s, one that is known to yield breakthroughs according to a Poisson process with intensity $\lambda_0 > 0$ (arm 0), and arm 1, which either yields breakthroughs according to a Poisson process with intensity $\lambda_1 > 0$ (if the time-invariant state of the world $\theta = 1$, which is the case with initial probability $p_0 \in (0,1)$) or never yields a breakthrough (if the state is $\theta = 0$). The principal observes all breakthroughs and the time at which they occur; he does not observe, though, on which arms the breakthroughs have been achieved. In addition to what the principal can observe, the agent also sees on which arms the breakthroughs have occurred. The principal and the agent share a common discount rate r. The decision problem (in particular, all parameter values) is common knowledge.

The principal’s objective is to ensure at minimal cost that it is a best response for the agent to use arm 1 up to the first breakthrough with probability 1. He chooses an end date $\hat{T}(t) \in [t,T)$ (where $T \in (T,\infty)$ is arbitrary), in case the first breakthrough occurs at time t. Conditional on there having been no breakthrough, the game ends at time $T < \infty$. Once the game ends, utilities are realized. In the first part of the paper, the horizon T is exogenous. In Section 6, when I let the principal choose the end date T, the first breakthrough achieved

10Pavan, Segal, Toikka (2009) also analyze the problem of dynamic incentive compatibility.
on arm 1 at time t gives him a payoff of $e^{-\beta t} \Pi$.\footnote{I am following Grossman & Hart’s (1983) classical approach to principal-agent problems in that I first solve for the optimal incentive scheme given an arbitrary T (Sections 4 and 5), and then let the principal optimize over T (Section 6).}

Formally, the number of breakthroughs achieved on arm i up to, and including, time t defines the point processes $\{N_i^t\}_{0 \leq t \leq T}$ (for $i \in \{0, 1\}$). In addition, let the point process $\{N_t\}_{0 \leq t \leq T}$ be defined by $N_t := N_t^0 + N_t^1$ for all t. Moreover, let $\mathcal{F} := \{\mathcal{F}_t\}_{0 \leq t \leq T}$ and $\mathcal{F}^N := \{\mathcal{F}^N_t\}_{0 \leq t \leq T}$ denote the filtrations generated by the processes $\{(N_t^0, N_t^1)\}_{0 \leq t \leq T}$ and $\{N_t\}_{0 \leq t \leq T}$, respectively.

By choosing which arm to pull, the agent affects the probability of breakthroughs on the different arms. Specifically, if he commits a constant fraction k_0 of his unit endowment flow to arm 0 over a time interval of length $\Delta > 0$, the probability that he achieves at least one breakthrough on arm 0 in that interval is given by $1 - e^{-\lambda_0 k_0 \Delta}$. If he commits a constant fraction of k_1 of his endowment to arm 1 over a time interval of length $\Delta > 0$, the probability of achieving at least one breakthrough on arm 1 in that interval is given by $\theta \left(1 - e^{-\lambda_1 k_1 \Delta}\right)$.

Formally, a strategy for the agent is a process $k := \{(k_{0,t}, k_{1,t})\}_{t}$, which satisfies $(k_{0,t}, k_{1,t}) \in \{(a, b) \in \mathbb{R}_+^2 : a + b \leq 1\}$ for all t, and is \mathcal{F}-predictable, where $k_{i,t} (i \in \{0, 1\})$ denotes the fraction of the agent’s resource that he devotes to arm i at instant t. The agent’s strategy space, which I denote by \mathcal{U}, is given by all the processes k satisfying these requirements. I denote the set of abridged strategies k_T prescribing the agent’s actions before the first breakthrough by \mathcal{U}_T.

A wage scheme offered by the principal is a non-negative, non-decreasing process $\{W_t\}_{0 \leq t \leq T}$ which is \mathcal{F}^N-adapted, where W_t denotes the cumulated discounted time-0 values of the payments the principal has consciously made to the agent up to, and including, time t. I assume the agent is protected by limited liability; hence $\{W_t\}_{0 \leq t \leq T}$ is non-negative and non-decreasing.\footnote{If the game ends at time \tilde{T}, we set $W_{T+\Delta} = W_T$ for all $\Delta > 0$.} I furthermore assume that the principal has full commitment power, i.e. he commits to a wage scheme $\{W_t\}_{0 \leq t \leq T}$, as well as a schedule of end dates $\{\tilde{T}(t)\}_{t \in [0, T]}$, at the outset of the game. In order to ensure that the agent has a best response, I restrict the principal to choosing a piecewise continuous function $t \mapsto \tilde{T}(t)$.

Over and above the payments he gets as a function of breakthroughs, the agent can secure himself a safe payoff flow of s from the principal by pulling the safe arm, which is unobservable to the principal. The idea is that the principal cannot observe the agent shirking in real time, as it were; only after the project is shut down, such information might come to light, and the principal only finds out ex post that he has been robbed of the payoff flow of s during the project. Thus, even though there is no explicit cost to the principal’s
provision of the bandit in my model, this assumption ensures that implied flow costs from doing so are at least s.

The principal’s objective is to minimize his costs, subject to an incentive compatibility constraint making sure that it is a best response for the agent to use arm 1 with probability 1 up to the first breakthrough. Thus, I shall denote the set of full-experimentation strategies by $\mathcal{K} := \{ k \in U : N_t = 0 \Rightarrow k_{1,t} = 1 \text{ for a.a. } t \in [0,T] \}$, and the corresponding set of abridged strategies by \mathcal{K}_T. Clearly, as the principal wants to minimize wage payments subject to implementing a full-experimentation strategy, it is never a good idea for him to pay the agent in the absence of a breakthrough; moreover, since the principal is only interested in the first breakthrough, the notation can be simplified somewhat. Let $\{ \mathcal{W}_t \}_{0 \leq t \leq T}$ be the principal’s wage scheme, and t the time of the first breakthrough: In the rest of the paper, I shall write ϕ_t for the instantaneous lump sum the principal pays the agent as a reward for his first breakthrough; i.e. if $N_t = 1$ and $\lim_{t \uparrow T} N_t = 0$, we can write $\phi_t := e^{rt} (\mathcal{W}_t - \lim_{t \uparrow T} \mathcal{W}_t)$. By w_t I denote the expected continuation value of an agent who has achieved his first breakthrough on arm 1 at time t, given he will behave optimally in the future; formally,

$$w_t := \sup_{\{(k_0, r, k_1, \tau)\}_{\tau < \tau(T)}} E \left[e^{rt} (\mathcal{W}_{\tau(T)} - \mathcal{W}_t) \right]$$

$$+ s \int_t^{\tau(T)} e^{-r(\tau - t)} (1 - k_{0,\tau} - k_{1,\tau}) \, d\tau \mid \mathcal{A}_t, \{(k_0, r, k_1, \tau)\}_{0 \leq \tau < \tau(T)}$$

where \mathcal{A}_t denotes the event that the first breakthrough has been achieved on arm 1 at time t, and $\{(k_0, r, k_1, \tau)\}_{\tau < \tau(T)}$ is the agent’s continuation strategy. Thus, the expectation conditions on the agent’s knowledge that the first breakthrough has been achieved on arm 1 at time t. Again, I impose piecewise continuity of the mappings $t \mapsto \phi_t$ and $t \mapsto w_t$. I denote by ω_t the corresponding expected continuation payoff of an off-path agent, who achieves his first breakthrough on arm 0 at time t, an event I designate by \mathcal{B}_t. Formally,

$$\omega_t := \sup_{\{(k_0, r, k_1, \tau)\}_{\tau \leq \tau(T)}} E \left[e^{rt} (\mathcal{W}_{\tau(T)} - \mathcal{W}_t) \right]$$

$$+ s \int_t^{\tau(T)} e^{-r(\tau - t)} (1 - k_{0,\tau} - k_{1,\tau}) \, d\tau \mid \mathcal{B}_t, \{(k_0, r, k_1, \tau)\}_{0 \leq \tau \leq \tau(T)}$$

where $\{(k_0, r, k_1, \tau)\}_{0 \leq \tau \leq \tau(T)}$ collects the agent’s past actions and his continuation strategy. At the top of Section 5, I shall impose assumptions guaranteeing the piecewise continuity of the mapping $t \mapsto \omega_t$.

The state of the world is uncertain; clearly, whenever the agent uses arm 1, he gets new information about its quality; this learning is captured in the evolution of his (private) belief \hat{p}_t that arm 1 is good. Formally, $\hat{p}_t := E[\theta \mid \mathcal{F}_t, \{(k_0, r, k_1, \tau)\}_{0 \leq \tau < t}]$. On the equilibrium
path, the principal will correctly anticipate \(\hat{p}_t \); formally, \(p_t = \hat{p}_t \), where \(p_t \) is defined by
\[
p_t := E \left[\hat{p}_t | \mathcal{F}_t^N, k \in \mathcal{K} \right].
\]

The evolution of beliefs is easy to describe, since only a good arm 1 can ever yield a breakthrough. By Bayes’ rule,
\[
\hat{p}_t = \frac{p_0 e^{-\lambda_1 \int_0^t k_{1,t} \, dt}}{p_0 e^{-\lambda_1 \int_0^t k_{1,t} \, dt} + 1 - p_0},
\]
and
\[
\dot{\hat{p}}_t = -\lambda_1 k_{1,t} \hat{p}_t (1 - \hat{p}_t)
\]
prior to the first breakthrough. After the agent has achieved at least one breakthrough on arm 1, his belief will be \(\hat{p}_t = 1 \) forever thereafter.

As, in equilibrium, the agent will always operate arm 1 until the first breakthrough, it is clear that if on the equilibrium path \(N_t \geq 1 \), then \(p_{t+\Delta} = 1 \) for all \(\Delta > 0 \). If \(N_t = 0 \), Bayes’ rule implies that
\[
p_t = \frac{p_0 e^{-\lambda_1 t}}{p_0 e^{-\lambda_1 t} + 1 - p_0}.
\]

Now, before the first breakthrough, given an arbitrary incentive scheme \(g := (\phi_t, w_t)_{0 \leq t \leq T} \), the agent seeks to choose \(k_T \in U_T \) so as to maximize
\[
\int_0^T \left\{ e^{-rt} \int_0^t \hat{p}_{s} k_{s,t} \, ds - \lambda_0 \int_0^t k_{0,s} \, ds \right\} \left\{ [1 - k_{0,t} - k_{1,t}] s + k_{0,t} \lambda_0 (\phi_t + \omega_t) + k_{1,t} \lambda_1 \hat{p}_t (\phi_t + w_t) \right\} dt
\]
subject to \(\dot{\hat{p}}_t = -\lambda_1 k_{1,t} \hat{p}_t (1 - \hat{p}_t) \).

The following impossibility result is immediate:

Proposition 3.1 If \(\lambda_0 \geq \lambda_1 \), there does not exist a wage scheme \(\{W_t\}_{0 \leq t \leq T} \) implementing any strategy in \(\mathcal{K} \).

Proof: Suppose \(\lambda_0 \geq \lambda_1 \), and suppose there exists a wage scheme \(\{W_t\}_{0 \leq t \leq T} \) implementing some strategy \(k \in \mathcal{K} \). Now, consider the alternative strategy \(\tilde{k} \not\in \mathcal{K} \) which is defined as follows: The agent sets \(\tilde{k}_{1,t} = 0 \) after all histories, and \(\tilde{k}_{0,t} = \frac{p_0 e^{-\lambda_1 t}}{p_0 e^{-\lambda_1 t} + 1 - p_0} \lambda_1 \) before the first breakthrough. After a first breakthrough, he sets \(\tilde{k}_{0,t} = k_{0,t} + \frac{\lambda_1}{\lambda_0} k_{1,t} \leq k_{0,t} + k_{1,t} \), history by history. By construction, \(\tilde{k} \) leads to the same distribution over \(\{N_t\}_{0 \leq t \leq T} \), and hence over \(\{W_t\}_{0 \leq t \leq T} \), as \(k \); yet, the agent strictly prefers \(\tilde{k} \) as it gives him a strictly higher payoff from the safe arm, a contradiction to \(\{W_t\}_{0 \leq t \leq T} \) implementing \(k \).
In the rest of the paper, I shall therefore assume that \(\lambda_1 > \lambda_0 \). When we denote the set of solutions to the agent’s problem that are implemented by an incentive scheme \(g \) as \(K^*(g) \), the principal’s problem is to choose \(g = (\phi_t, w_t)_{0 \leq t \leq T} \) so as to minimize his wage bill

\[
\int_0^T e^{-rt - \lambda_1 \int_0^t \phi_t + w_t \, dt}
\]

subject to \(p_t = \frac{p_0 e^{-\lambda_1 t}}{p_0 e^{-\lambda_1 t + 1 - p_0}} \) and \(K^*(g) \cap K_T \neq \emptyset \). It turns out that the solution to this problem coincides with the solution to the problem in which \(K^*(g) \subseteq K_T \) is additionally imposed; i.e. it is no costlier to the principal to implement full experimentation in any Nash equilibrium than to ensure that there exist a Nash equilibrium in which the agent employs a full experimentation strategy (see Section 5).

In the next two sections, the end date \(T \) is given. In Section 6, the principal will optimally choose this end date \(T \). Thus far, we have been silent on how the continuation value of \(w_t \) is delivered to the agent after his first breakthrough. It will turn out, though, that the manner by which the principal gives the agent his continuation value will matter greatly, as we will see in the next section.

\section{Incentives After A First Breakthrough}

\subsection{Introduction}

The purpose of this section is to analyze how the principal will deliver a promised continuation value of \(w_t > 0 \) given a first breakthrough has occurred at time \(t \). His goal will be to find a scheme which maximally discriminates between an agent who has achieved his breakthrough on arm 1, as he was supposed to, and an agent who has been “cheating,” i.e. who has achieved the breakthrough on arm 0. Put differently, for any given promise \(w_t \) to the on-path agent, it is the principal’s goal to push the off-path agent’s continuation value \(\omega_t \) down, as this will give him a bigger bang for his buck in terms of incentives. Since an off-path agent will always have experimented less than an on-path agent, \(\hat{p}_t \), his private (off-path) belief at time \(t \), will satisfy \(\hat{p}_t \in [p_t, p_0] \). As an off-path agent always has the option of imitating the on-path agent’s strategy, we know that \(\omega_t \geq \hat{p}_t w_t \). The following proposition summarizes the main result of this section; it shows that, as a function of \(\hat{p}_t \), \(\omega_t \) can be pushed arbitrarily close to this lower bound.

\begin{proposition}
For every \(\epsilon > 0, w_t > 0 \), there exists a continuation scheme such that \(\omega_t(\hat{p}_t) \leq \hat{p}_t w_t + \frac{\epsilon}{2}(1 - e^{-rt}) \) for all \(\hat{p}_t \in [p_t, p_0] \).
\end{proposition}
The construction of this wage scheme relies on the assumption that $\lambda_1 > \lambda_0$, implying that the variance in the number of successes with a good risky arm 1 is higher than with arm 0. Therefore, the principal will structure his wage scheme in such a way as to reward realizations in the number of later breakthroughs that are “extreme enough” that they are very unlikely to have been achieved on arm 0 as opposed to arm 1. Thus, even the most pessimistic of off-path agents would prefer to bet on his arm 1 being good rather than pull arm 0. Yet, now, in contrast to the off-path agents, an on-path agent will know for sure that his arm 1 is good, and therefore has a distinct advantage in expectation when facing the principal’s payment scheme after a first breakthrough. The agent’s anticipation of this advantage in turn gives him the right incentives to use arm 1 rather than arm 0 before the first breakthrough occurs.

4.2 Construction of An Optimal Continuation Scheme

Since ω_t would coincide with its lower bound $\hat{p}_t w_t$ if an on-path agent always played arm 1 after a first breakthrough, and off-path agents had no better option than to imitate the former’s behavior, the purpose of the construction is to approximate such a situation. Since $\lambda_1 > \lambda_0$, on-path agents, who know that their arm 1 is good, will never use arm 0. The purpose of the first step of my construction is to make sure that the same hold true for all off-path agents also. To this effect, the principal will only pay the agent for the m-th breakthrough after time t, where m is chosen large enough that any, even the most pessimistic of off-path agents will deem m breakthroughs more likely to occur on arm 1 than on arm 0. Then, in a second step, the end date $\bar{T}(t) > t$ is chosen so that $\bar{T}(t) - t \leq \epsilon$. This ensures that the agent’s option value from being able to switch to the safe arm is bounded above by $\frac{\xi}{\gamma} (1 - e^{-\gamma t})$. Then, given the end date $\bar{T}(t)$, the reward is chosen appropriately so that the on-path agent exactly receive his promised continuation value of w_t in expectation.

Specifically, the agent is only paid a constant lump sum of ∇_0 after his m-th breakthrough after time t, where m is chosen sufficiently high that even for the most pessimistic of all possible off-path agents, arm 1 dominate arm 0. As $\lambda_1 > \lambda_0$, such an m exists, as the following lemma shows:

Lemma 4.2 There exists an integer m such that if the agent is only paid a lump sum reward $\nabla_0 > 0$ for the m-th breakthrough, arm 1 dominates arm 0 for any type of off-path agent whenever he still has m breakthroughs to go before collecting the lump sum reward.
Intuitively, the likelihood ratio of \(m \) breakthroughs being achieved on arm 1 vs. arm 0 in the time interval \((t, \hat{T}(t)]\),
\[
\hat{p}_t \left(\frac{\lambda_1}{\lambda_0} \right)^m e^{-(\lambda_1-\lambda_0)(\hat{T}(t)-t)},
\]
is unbounded in \(m \). Using the assumption that \(\hat{T} < \infty \), and that hence the agent’s belief after all histories is bounded below by some \(p_T > 0 \), the proof now shows, by virtue of a first-order stochastic dominance argument, that when \(m \) exceeds certain thresholds, which can be chosen independently of \(\hat{T}(t) \), it indeed never pays for the agent to use arm 0.

Thus, Lemma 4.2 shows that we can ensure that off-path agents will never continue to use arm 0 after time \(t \). Ending the game suitably soon after a first breakthrough, namely at some time \(\hat{T}(t) \in (t, t+\epsilon] \), bounds off-path agents’ option values from having access to the safe arm by \(\hat{p}_t(1 - e^{-\epsilon r}) \). Hence, an off-path agent of type \(\hat{p}_t \) can indeed at most get \(\hat{p}_t w_t + \frac{r}{\hat{T}} (1 - e^{-\epsilon r}) \). What remains to be shown is that, given \(\hat{T}(t) \) and \(m \), \(\nabla_0 \) can be chosen in a manner that ensures that the on-path agent get precisely what he is supposed to get, namely \(w_t \). While this is essentially a continuity argument, its details are somewhat intricate and technical, and are hence relegated to Appendix A.

In summary, the mechanism I have constructed delivers a certain given continuation value of \(w_t \) to the on-path agent; it must take care of two distinct concerns in order to harness maximal incentive power at a given cost. On the one hand, it must make sure off-path agents never continue to play arm 0; this is achieved by only rewarding the \(m \)-th breakthrough after time \(t \), with \(m \) being chosen appropriately high. On the other hand, the mechanism must preclude the more pessimistic off-path agents from collecting an excessive option value from being able to switch between the safe arm and arm 1. This is achieved by ending the game soon enough after a first breakthrough. Note that, given the continuation value \(w_t \) to be delivered, the principal does not need to know the agent’s exact prior belief \(p_0 \) for the implementation of this continuation scheme; he only needs to be able to bound the agent’s pessimism away from 0.\(^{13} \) However, in order optimally to fine-tune this \(w_t \), exact knowledge of \(p_0 \) becomes necessary, as we shall see in the following section.

\(^{13}\)Note that in order to choose \(m \), exact knowledge of \(\lambda_1 \) is not required either. Indeed, provided that \(\lambda_1 \) is known to be in \([\lambda_1, \overline{\lambda}_1]\), with \(\lambda_1 > \lambda_0 \), \(m \) can be chosen high enough given the bounds \(\lambda_1 \) and \(\overline{\lambda}_1 \). In order to fine-tune the lump sum \(\bar{V}_0 \) so that the agent get precisely a given \(w_t \) in expectation, the principal does need to know \(\lambda_1 \) precisely, however. Moreover, the strategic problem if the principal does not know \(\lambda_1 \) precisely is far more complicated, as he would now continue to learn even after a first breakthrough, and the agent could strategically manipulate this learning process. A thorough investigation of these aspects is outside the scope of this paper.
Whereas in the previous section, I have investigated how the principal would optimally deliver a given continuation value w_t, the purpose of this section is to understand how optimally to provide incentives before a first breakthrough. I shall show that thanks to the continuation scheme we have constructed in the previous section (see Proposition 4.1), arm 0 can be made so unattractive that in any optimal scheme it is dominated by the safe arm. Thus, in order to induce the agent to use arm 1, he only needs to be compensated for his outside option of playing safe, which pins down the principal’s wage costs (Proposition 5.3).

In order formally to analyze the optimal incentive schemes before a first breakthrough, we first have to consider the agent’s best responses to a given incentive scheme $(\phi_t, w_t)_{0 \leq t \leq T}$, in order to derive conditions for the agent to best respond by always using arm 1 until the first breakthrough. In a second step, we will then use these conditions as constraints in the principal’s problem as he seeks to minimize his wage bill. While the literature on experimentation with bandits would typically use dynamic programming techniques, this would not be expedient here, as an agent’s optimal strategy will depend not only on his current belief and the current incentives he is facing but also on the entire path of future incentives. To the extent it would be inappropriate to impose any \textit{ex ante} monotonicity constraints on the incentive scheme, today’s scheme need not be a perfect predictor for the future path of incentives; therefore, even a three-dimensional state variable (\hat{p}_t, ϕ_t, w_t) would be inadequate. Thus, I shall be using Pontryagin’s Optimal Control approach.

The Agent’s Problem

Given an incentive scheme $(\phi_t, w_t)_{0 \leq t \leq T}$, the agent chooses $(k_{0,t}, k_{1,t})_{0 \leq t \leq T}$ so as to maximize

$$\int_0^T \left\{ e^{-rt} \int_0^t \dot{\hat{p}} \cdot k_{1,\tau} d\tau - \lambda_0 \int_0^t k_{0,\tau} d\tau \right\} \left[(1 - k_{0,t} - k_{1,t})s + k_{1,t} \lambda_0 (\phi_t + \omega_t(\hat{p}_t)) + k_{1,t} \lambda_1 \hat{p}_t (\phi_t + w_t) \right] dt,$$

subject to $\dot{\hat{p}} = -\lambda_1 k_{1,t} \hat{p}_t (1 - \hat{p}_t)$.

It will turn out to be useful to work with the log-likelihood ratio $x_t := \ln \left(\frac{1 - \rho_t}{\hat{p}_t} \right)$, and the probability of no success on arm 0, $y_t := e^{-\lambda_0 \int_0^t k_{0,\tau} d\tau}$, as the state variables in our variational problem. These evolve according to $\dot{x}_t = \lambda_1 k_{1,t}$ (to which law of motion I assign the co-state μ_t), and $\dot{y}_t = -\lambda_0 k_{0,t} y_t$ (co-state γ_t), respectively. The initial values $x_0 = \ln \left(\frac{1 - \rho_0}{p_0} \right)$ and $y_0 = 1$ are given, and x_T and y_T are free. The agent’s controls are $(k_{0,t}, k_{1,t}) \in \{(a, b) \in \mathbb{R}_+ : a + b \leq 1 \}$.

In a slight abuse of notation, I shall subsequently write ω_t as a function of x_t. In
order to ensure the piecewise continuity of $\omega_t(x_t)$ in t (for a given x_t), I shall henceforth assume throughout that in the continuation scheme following a first success, the principal will apply a threshold number of successes m that is constant over time. (The proof of Lemma 4.2 shows that m can be chosen in this way.) Moreover, to the same end, I will be assuming throughout that ∇_0, the lump sum reward for the $(m+1)$-st breakthrough overall, is piecewise continuous as a function of t, the time of the first breakthrough. These assumptions guarantee that the agent indeed has a best response, as the following lemma shows:

Lemma 5.1 The agent has a best response to any given incentive scheme $(\phi_t, w_t)_{0 \leq t \leq T}$.

Proof: See Appendix C.

To state the following proposition, I define $\epsilon_t := \tilde{T}(t) - t$. I shall say that a wage scheme is continuous if ϕ_t, w_t and ϵ_t are continuous functions of time t. The following proposition shows that if a wage scheme is continuous, then Pontryagin’s conditions, which are exhibited in Appendix B, are not only necessary, but also sufficient, for the agent’s best-responding by being honest throughout. Moreover, the proposition implies that, if the wage scheme is continuous, the conditions will ensure that compliance with the principal’s desire for honesty is the agent’s essentially unique best response (i.e. but possibly for deviations on a null set, which are innocuous to the principal). While the proof of this result is a little tedious, its intuition is rather straightforward: If incentives at a given time t are strong enough to induce an on-path agent to be honest, any off-path agent, who, before a first breakthrough, will necessarily be more optimistic about the quality of arm 1, will have strict incentives to be honest. Continuity now ensures that strict incentives for honesty prevail on an open set just before time t as well, on which any off-path agent thus has to be honest in order to satisfy Pontryagin’s conditions. Thus, if honesty satisfies the necessary conditions for a best response, it will uniquely do so. This is summarized in the following proposition.

Proposition 5.2 Suppose that $k_{1,t} = 1$ for all t satisfies Pontryagin’s necessary conditions as stated in Appendix B, even for the upper bound on ω_t given by Proposition 4.1. Suppose

As we have seen in Appendix A, we can write $w_t = V_m(t; \nabla_0; \tilde{T}(t))$, where $V_m(t; \nabla_0; \tilde{T}(t))$ denotes the on-path agent’s expected payoff at time t, given he has m breakthroughs to go to collect the lump sum ∇_0, while the game ends at time $\tilde{T}(t)$. We have shown that $V_m(t; \cdot; \tilde{T}(t))$ is continuous, and strictly increasing if $t_{m}^* > t$, and constant if $t = t_{m}^*$, while t_{m}^* is continuous and increasing in ∇_0, and $V_m(t; \nabla_0; \cdot)$ is continuous and strictly increasing. Thus, a jump in ∇_0 is either innocuous (which may be the case either because $t_{m}^* = t$ both before and after the jump, or because it is exactly counterbalanced by a jump in $\tilde{T}(t)$), or it leads to a jump in w_t. Since w_t is piecewise continuous, it follows that there exists a piecewise continuous time path of lump sums $\nabla_0(t)$ (as a function of the date of the first breakthrough t) delivering w_t.

17
furthermore that ϕ_t, w_t, and ϵ_t are continuous functions of time t. Then, if $(k_{0,t}, k_{1,t})_{0 \leq t \leq T}$ is a best response, it is the case that $k_{1,t} = 1$ for a.a. t.

Proof: See Appendix C.

Our strategy for the rest of this section is to find the cheapest possible schemes such that the agent’s necessary conditions for his best responding by being honest be satisfied. In a second step, we shall then verify if one of these schemes is in fact continuous. If it is, it must be optimal, since any cheaper scheme would violate even the necessary conditions for honesty by our first step.

The Principal’s Problem

Now we turn to the principal’s problem, who will take the agent’s incentive constraints into account when designing his incentive scheme with a view toward implementing $k_{1,t} = 1$ for almost all $t \in [0, T]$. As we have shown in Appendix B, for the agent to best-respond by setting $k_{1,t} = 1$ at a.a. times t, it is necessary that there exist absolutely continuous functions μ_t and γ_t satisfying

$$\dot{\mu}_t = -\dot{\gamma}_t = e^{-rt-x_t}\lambda_1(\phi_t + w_t)$$

for a.a. t, as well as the transversality conditions $\mu_T = \gamma_T = 0$. Moreover, $x_t = x_0 + \lambda_1 t$ and $y_t = 1$ for all t. Furthermore, it has to be the case that

$$e^{-rt}\left[e^{-x_t}\lambda_1(\phi_t + w_t) - (1 + e^{-x_t})s\right] \geq -\mu_t \lambda_1,$$

for a.a. t.

Thus, the principal’s objective is to choose $(\phi_t, w_t)_{0 \leq t \leq T}$ (with $(\phi_t, w_t) \in [0, L]^2$ at all t, for some $L > 0$ which is chosen large enough) so as to minimize

$$\int_0^T e^{-rt-\lambda_1 \int_0^t p_r \, d\tau} p_t \lambda_1(\phi_t + w_t) \, dt$$

subject to the constraints $x_t = x_0 + \lambda_1 t$, $y_t = 1$, (1), (2), (3), and the transversality conditions $\mu_T = \gamma_T = 0$.

Neglecting constant factors, one can re-write the principal’s objective in terms of the log-likelihood ratio as

$$\int_0^T e^{-(r+\lambda_1)t}(\phi_t + w_t) \, dt.$$
While this expression for the principal’s objective is independent of the parties’ initial belief p_0, the solution will of course depend on the parties’ belief via the constraints. Indeed, by (1), we have that

$$\mu_t = -\gamma_t = -\lambda_1 e^{-rt-x_t} \int_t^T e^{-(r+\lambda_1)(\tau-t)}(\phi_t+w_t) d\tau = \frac{\lambda_1 p_t}{1-p_t} e^{-rt} \int_t^T e^{-(r+\lambda_1)(\tau-t)}(\phi_t+w_t) d\tau.$$

(4)

Thus, $-\mu_t$ measures the agent’s opportunity costs from possibly forgone future rewards. As in Hörner & Samuelson (2013), these future rewards adversely impact today’s incentives, as, by pulling arm 1 today, the agent “risks” having his first breakthrough today, thereby forfeiting his chance of collecting the rewards offered for a first breakthrough tomorrow. Hence, generous rewards are doubly expensive for the principal: On the one hand, he has to pay out more in case of a breakthrough today; yet, on the other hand, by paying a lot today, he might make it attractive for the agent to procrastinate at previous points in time in the hope of winning today’s reward. In order to counteract this effect, the principal has to offer higher rewards at previous times in order to maintain incentives intact, which is the effect captured by μ_t. The strength of this effect is proportional to the instantaneous probability of achieving a breakthrough today, $p_t \lambda_1 dt$; future rewards are discounted by the rate $r + \lambda_1$, as a higher λ_1 implies a correspondingly lower probability of players’ reaching any given future period τ without a breakthrough having previously occurred. This dynamic effect becomes small as players become impatient. Since $\mu_t = -\gamma_t$ for all $t \in [0, T]$, we shall henceforth only keep track of μ_t.

Our following proposition will give a superset of all optimal schemes, as well as exhibit an optimal scheme. It will furthermore show that optimality uniquely pins down the principal’s wage costs. In the class of schemes with $\phi_t = 0$ for all t, the optimal scheme is essentially unique. The characterization relies on the fact that it never pays for the principal to give strict rather than weak incentives for the agent to do the right thing, because if he did, he could lower his expected wage bill while still providing adequate incentives. This means that, given he will do the right thing come tomorrow, at any given instant t, the agent is indifferent between doing the right thing and using arm 1, on the one hand, and his next best outside option on the other hand. Yet, the wage scheme we have constructed in Section 4 makes sure that, if $\phi_t = 0$ for all t, the agent’s best outside option can never be arm 0. Indeed, in this case, playing arm 0 yields the agent approximately $p_t w_t$ after a breakthrough, which occurs with an instantaneous probability of $\lambda_0 dt$ if arm 0 is pulled over a time interval of infinitesimal length dt. Arm 1, by contrast, yields w_t in case of a breakthrough, which occurs with an instantaneous probability of $p_t \lambda_1 dt$; thus, as $\lambda_1 > \lambda_0$, arm 1 dominates arm 0. Hence, w_t is pinned down by the binding incentive constraint for the safe arm.

To facilitate the exposition of the following proposition, we define the function \tilde{w} ac-
According to

\[\hat{w}(t) := \begin{cases} \frac{\hat{s}}{\lambda_1 p_t} + \frac{\hat{p}}{r} (1 - e^{-r(T-t)}) + \frac{1-p_t}{p_t} s \left(1 - e^{-(r - \lambda_1)(T-t)} \right) & \text{if } r \neq \lambda_1 \\ \frac{s}{\lambda_1 p_t} + \frac{\hat{s}}{r} (1 - e^{-r(T-t)}) + \frac{1-p_t}{p_t} s(T-t) & \text{if } r = \lambda_1. \end{cases} \]

As is readily verified by plugging \(\mu_t = -\lambda_1 \int_t^T e^{-rt} x^r (\phi_r + w_t) \, d\tau \) into (2), the incentive constraint for the safe arm, \(\hat{w}(t) \) is the reward that an agent with the belief \(p_t \) has to be offered at time \(t \) to make him exactly indifferent between using arm 1 and the safe arm, given that he will continue to use arm 1 in the future until time \(T \). The first term \(\frac{s}{\lambda_1 p_t} \) signifies the compensation the agent must receive for forgoing the immediate flow of \(s dt \); yet, with an instantaneous probability of \(p_t \lambda_1 dt \), the agent has a breakthrough, and play moves into the continuation phase, which we have analyzed in Section 4. In case of such a success, the agent has to be compensated for the forgone access to the safe arm he would have enjoyed in the absence of a breakthrough; this function is performed by the second term, \(\frac{\hat{p}}{r} (1 - e^{-r(T-t)}) \).

The third term is the procrastination rent, i.e. the extra payment the agent has to receive in order to counteract the allure of future incentives. Indeed, not being myopic, the agent takes into account that, if he has his first success today, he will forgo his chance of having his first success tomorrow. The procrastination rent is increasing in the remainder of time, \(T - t \), and arbitrarily small for very impatient agents. We are now ready to characterize the principal’s optimal wage schemes:

Proposition 5.3 If a scheme is optimal, it is in the set \(\mathcal{E} \), with

\[\mathcal{E} := \left\{ (\phi_t, w_t)_{0 \leq t \leq T} : 0 \leq (1 - p_t) \phi_t < s \left(\frac{1}{\lambda_0} - \frac{1}{\lambda_1} \right) \text{ and } \phi_t + w_t = \hat{w}(t) \text{ a.a.} \right\}. \]

If a scheme is in \(\mathcal{E} \) and continuous, it is optimal. One optimal wage scheme is given by \(\phi_t = 0 \) and \(w_t = \hat{w}(t) \) for all \(t \in [0, T] \).

PROOF: By construction of \(\hat{w} \), (2) binds at a.a. \(t \) for all schemes in \(\mathcal{E} \). Algebra shows that (3) holds given that (2) binds if, and only if,

\[\frac{e^{x_t} \phi_t + \omega_t(x_t)}{1 + e^{x_t}} \leq \frac{w_t}{1 + e^{x_t}} + s \left(\frac{1}{\lambda_0} - \frac{1}{\lambda_1} \right). \] (5)

As by Proposition 4.1, \(\omega_t(p_t) > p_t w_t \), yet arbitrarily close to \(p_t w_t \), condition (5) is equivalent to the inequality in the definition of \(\mathcal{E} \).\(^{15}\) Clearly, (5) is satisfied for \(\phi_t = 0 \) and \(\frac{\hat{p}}{r} (1 - e^{-r t}) \leq s \left(\frac{1}{\lambda_0} - \frac{1}{\lambda_1} \right) \). As \(w_t = \hat{w}(t) \) is continuous, there exists a continuous \(\epsilon_t \) satisfying this constraint, and delivering \(w_t = \hat{w}(t) \) in the continuation scheme we have constructed in Section 4.

\(^{15}\)If \(\lambda_0 \) is so low that the construction of Proposition 4.1 goes through for \(m = 1 \), the inequality \((1 - p_t) \phi_t \leq s \left(\frac{1}{\lambda_0} - \frac{1}{\lambda_1} \right) \) is weak, rather than strict. The same holds true if \(w_t = 0 \).
By the construction of \(\tilde{w} \), any scheme that is not in \(E \) yet satisfies the constraints (1), (2) and (3) a.s., as well as the transversality condition, is more expensive to the principal than any scheme in \(E \). Proposition 5.2 thus immediately implies that if a scheme is in \(E \) and is continuous, it is optimal. As we have discussed, the scheme given by \(\phi_t = 0 \) and \(w_t = \tilde{w}(t) \) for all \(t \) can be made continuous through a judicious choice of \(\epsilon_t \). This implies that any scheme outside of \(E \) is dominated by \(\phi_t = 0 \) and \(w_t = \tilde{w}(t) \) for all \(t \), and hence cannot be optimal.

Note that this result implies that it is without loss for the principal to restrict himself to schemes that never reward the agent for his first breakthrough, even though the first breakthrough is all the principal is interested in. The intuition for this is that when paying an immediate lump sum for the first breakthrough, the principal cannot discriminate between an agent who has achieved his first breakthrough on arm 0 on the one hand, and an on-path agent on the other; the latter, though, will enjoy an informational advantage in the continuation game. Indeed, by Proposition 4.1, the principal can make sure that an increase in \(w_t \) translates into less of an increase in \(\omega_t \), whereas \(\phi_t \) is paid out indiscriminately to on-path and off-path agents alike. Hence, incentive provision can only be helped when incentives are given through the continuation game rather than through immediate lump-sum payments.

A further immediate implication of the preceding proposition is that the optimal incentive scheme is essentially unique in that the wage payments \(\phi_t + w_t \) are a.s. uniquely pinned down. Clearly, optimal wage costs \(\tilde{w} \) are decreasing in \(r \), implying that incentives are the cheaper to provide the more impatient the agent is. As the agent becomes myopic \((r \to \infty) \), wage costs tend to \(\frac{s}{\lambda_{\text{Pr}}} \), since in the limit he now only has to be compensated for the immediate flow cost of forgoing the safe arm. As the agent becomes infinitely patient \((r \downarrow 0) \), wage costs tend to \(\frac{s}{\lambda_{\text{Pr}}} + s(T - t) \). Concerning the evolution of rewards over time, there are two countervailing effects as in Bonatti & Hörner (2011): On the one hand, the agent becomes more pessimistic over time, so that rewards will have to increase to make him willing to work nonetheless; on the other hand, as the deadline approaches, the idea of kicking back and waiting for a future success progressively loses its allure, which should allow the principal to reduce wages somewhat in the here and now. Which effect ultimately dominates depends on the parameters; if players have very high discount rates \(r \), the dynamic effect favoring decreasing rewards becomes very small, and rewards will be increasing. For very small \(r \), by contrast, the dynamic effect dominates, and rewards will decrease over time. The discounted rewards \(e^{-rt}\tilde{w}(t) \), by contrast, are always strictly decreasing. This implies that the agent would never have an incentive to tamper with the timing of his first
breakthrough by pretending that it occurred later than it actually had.\footnote{A similar observation applies to the continuation scheme we have constructed in Section 4. There as well, the agent would want to bring forward as much as possible the time of the \((m+1)\)-st breakthrough.}

Another immediate implication is the importance of delivering rewards via an “off-line” mechanism, i.e. by means of the continuation game. Indeed, whenever \(p_t \lambda_1 \leq \lambda_0\) at a time \(t < T\), it is impossible to implement the use of arm 1 on the mere strength of immediate lump-sum rewards. This is easily seen to follow from condition (3), the incentive constraint for arm 0, since \(\phi_t \geq 0\) by limited liability:

\[
e^{-rt}(p_t \lambda_1 - \lambda_0) \phi_t \geq -\mu_t (1 - p_t)(\lambda_1 - \lambda_0) > 0.
\]

Conversely, whenever \(p_t \lambda_1 > \lambda_0\), it is always possible to blow up \(\phi_t\) in a way to make the incentive constraints hold. However, even in this case, it may well be suboptimal for the principal to restrict himself to immediate rewards. As is directly implied by Proposition 5.3, a necessary condition for immediate rewards to be consistent with optimality at a generic time \(t\) is that \(\tilde{\omega}(t) < \frac{1}{1-p_t} \left(\frac{1}{\lambda_0} - \frac{1}{\lambda_1} \right)\), which one can show is a strictly more stringent condition than \(p_t \lambda_1 > \lambda_0\). The reason for this is in the right-hand side of (6), the procrastination rent: If an agent has a success now, he forgoes the chance of obtaining the rewards for potential future successes. Now, note that (3), and hence (6), ensure that the agent prefers arm 1 over arm 0, given that he uses arm 1 at all future times. With respect to these future rewards, obtaining a success on arm 1 now is bad news, in the sense that the agent now learns that he indeed would have stood a good chance of obtaining a success on arm 1 at some point in the future, whereas a success on arm 0 conveys no such information. Therefore, while it is always possible to increase \(\phi_t\) to the point that the immediate rewards crowd out this effect, doing so might be costlier than would be needed to make the agent (weakly) prefer arm 1 over the safe arm. Hence, restricting the principal to instantaneous rewards might be costly even for beliefs \(p_t \lambda_1 > \lambda_0\).

6 The Optimal Stopping Time

In the previous section, we have shown that the presence of a cheating option does not lead to any distortions in the players’ payoffs, but that nevertheless the agent has to be left a procrastination rent to counteract the allure of future rewards. In this section, we investigate the impact of this distortion in a setting in which we let the principal additionally choose to what end date \(T \in [0, \bar{T})\) to commit at the outset of the game (with \(\bar{T} < \infty\) chosen suitably large). As the first-best benchmark, I use the solution given by the hypothetical situation in which the principal operates the bandit himself, and decides when to stop using arm 1,
which he pulls at a flow cost of s, conditional on not having obtained a success thus far. Thus, the principal, who obtains a payoff of Π at the first breakthrough, chooses T so as to maximize
\[
\int_0^T \left\{ e^{-rt - \lambda_1 \int_0^t p_r \, dr} (p_t \lambda_1 \Pi - s) \right\} \, dt
\] (7)
subject to $\dot{p}_t = -\lambda_1 p_t (1 - p_t)$ for all $t \in (0, T)$. Clearly, the integrand is positive if, and only if, $p_t \lambda_1 \Pi \geq s$, i.e. as long as $p_t \geq \frac{s}{\lambda_1 \Pi} =: p^m$. As the principal is only interested in the first breakthrough, information has no value for him, meaning that, very much in contrast to the classical bandit literature, he is not willing to forgo current payoffs in order to learn something about the state of the world. In other words, he will behave myopically, i.e. as though the future was of no consequence to him, and stops playing risky at his myopic cutoff belief p^m, which is reached at time $T_{FB} = \frac{1}{\lambda_1} \ln \left(\frac{p_0 \frac{1-\lambda_1}{p_0} p^m}{p^m} \right)$.

Regarding the second-best situation where the principal delegates the investigation to an agent, I shall compute the optimal end date T, assuming that the principal is restricted to implementing arm 1 a.s. before time T; i.e. his goal is to commit to an end date T so as to maximize
\[
\int_0^T \left\{ e^{-rt - \lambda_1 \int_0^t p_r \, dr} p_t \lambda_1 (\Pi - \tilde{w}(t)) \right\} \, dt
\] (8)
subject to $\dot{p}_t = -\lambda_1 p_t (1 - p_t)$ for all $t \in (0, T)$.

Thus, all that changes with respect to the first-best problem (7) is that the opportunity cost flow s is now replaced by the optimal wage costs $\tilde{w}(t)$ (see Proposition 5.3). These of course only have to be paid out in case of a success, which happens with an instantaneous probability of $p_t \lambda_1 dt$. After plugging in for $\tilde{w}(t)$, one finds that the first-order derivative of the objective with respect to T is given by
\[
e^{-rT} \left(\lambda_1 \Pi - \frac{s}{p_T} \right) - e^{-rT} \frac{s}{p_T} (1 - e^{-\lambda_1 T}).
\] (9)

The marginal effect captures the benefit the principal could collect by extending experimentation for an additional instant at time T. Yet, as we have discussed in Section 5, the choice of an end date T also entails an intra-marginal effect at times $t < T$. Indeed, we have seen that for him to use arm 1 at time t, the agent has to be compensated for the opportunity cost of the potentially forgone rewards for having his first breakthrough at some future date, an effect that is the stronger “the more future there is,” i.e. the more distant the end date T is. Hence, by marginally increasing T, the principal also marginally raises his wage liabilities at times $t < T$. Thus, as the following proposition shows, the principal gives up on the project too soon, an effect similar to the one found in Hörner & Samuelson (2013) and Bergemann...
Proposition 6.1 Let $p_0 > p^m$. The principal stops the game at the time $T^* \in (0, T^{FB})$ when $p_T = p^m e^{\lambda_1 T^*}$, i.e.

$$T^* = \frac{1}{\lambda_1} \ln \left(\frac{-p^m p_0 + \sqrt{(p^m p_0)^2 + 4p^m p_0 (1 - p_0)}}{2p^m (1 - p_0)} \right).$$

Proof: The formula for p_T is gotten by setting the expression (9) to 0, and verifying that the second-order condition holds. Now, T^* is the unique root of $\frac{p_0 e^{-\lambda_1 T^*}}{p_0 e^{-\lambda_1 T^*} + 1 - p_0} = p^m e^{\lambda_1 T^*}$. \(\blacksquare\)

The stopping times T^{FB} and T^* are both increasing in the players’ optimism p_0 as well as in the stakes at play as measured by the ratio $\frac{1}{p^m} = \frac{\lambda_1 \Pi}{s}$. Thus, the more optimistic the principal initially is about the agent’s ability to produce a real breakthrough, and the more important such a breakthrough is to him, the longer he is willing to bear with the agent.

The size of the distortion can be measured by the ratio $\frac{p_T - p^m}{p^m}$, which is also increasing in the stakes at play. This is because of the intra-marginal effect we have discussed supra; as stakes increase, and the principal consequently extends the deadline T^*, the agent’s incentives for procrastination are exacerbated at intra-marginal points in time. This in turn increases the agent’s wages $\tilde{w}(t)$ at these intra-marginal points in time, so that the principal can only appropriate part of any increase in the overall pie. Yet the wedge $\frac{p_T - p^m}{p^m}$ is also increasing in players’ optimism, as measured by p_0. Since p^m is independent of p_0, this implies that the threshold belief p_T is increasing in p_0. This means that the more highly the principal initially thinks of the agent, the higher the bar to which he will optimally hold him. Whereas at any time t, wage costs $\tilde{w}(t)$ are decreasing in p_0, and hence T^* is increasing in p_0, there is a countervailing second-order effect in the principal-agent game that is absent from the first-best problem: On the one hand, the agent’s propensity to procrastinate $|\mu_t|$ is increasing in p_0; i.e. an agent who is more optimistic about his abilities is more likely to ‘take it easy’, and bet on having a success tomorrow. On the other hand, similarly to the case of rising stakes, any increase in the end date additionally compounds the agent’s proclivity for procrastination. The following proposition summarizes these comparative statics:

17In Hörner & Samuelson (2013), the principal has all the bargaining power, as in our paper. In Bergemann & Hege (2005), by contrast, the agent has all the bargaining power, and thus can keep the principal down to his reservation utility of 0. In either paper, the principal does not have commitment power. Here, we see that, even with full commitment power, the principal cannot overcome this ‘procrastination effect’ due to the dynamic allure of future incentives. Meanwhile, in Bergemann & Hege (1998), the agent has all the bargaining power, yet parties can commit to long-term contracts. In this case, the project may, but need not, be terminated inefficiently early (see their Proposition 5).
Proposition 6.2 The stopping time T^\ast, as well as the wedge $\frac{p_T - p^m}{p^m}$, are increasing in the stakes at play $\frac{\lambda_1 \Pi}{s}$ and in players’ optimism p_0.

Proof: See Appendix C.

Yet, also recall from the preceding sections that, given the optimal incentive scheme we have computed there, the principal only needs to compensate the agent for his outside option of using the safe arm. Put differently, the presence of a cheating action, arm 0, does not give rise to any distortions; the only distortions that arise are due to the fact that high future rewards to some extent cannibalize today’s rewards. Yet, in many applications, the principal’s access may not be restricted to a single agent; rather, he might be able to hire several agents sequentially if he so chooses. Now, in the limit, if the principal can hire agents for a mere infinitesimal instant dt, he can completely shut down the intra-marginal effect we have discussed above. Indeed, if we assume that subsequent agents observe preceding agents’ efforts (so that the agent hired at instant t will have a belief of p_t rather than p_0), we can see from the formula for \tilde{w} that the reward an agent who is only hired for an instant of length dt would have to be promised for a breakthrough is given by $\frac{s}{\lambda_{1p\epsilon}} (1 + \lambda_1 dt) + o(dt)$. Hence, it pays for the principal to go on with the project as long as $p_t \lambda_1 \left(\Pi - \frac{s}{p_{0}\lambda_1} (1 + \lambda_1 dt) \right) dt + o(dt) > 0$, i.e. he stops at the first-best efficient stopping time, a result I summarize in the following proposition:

Proposition 6.3 If the principal has access to a sequence of different agents, he stops the delegated project at the time T^{FB} when $p_T^{FB} = p^m$.

Thus, while delegating the project to an agent forces the principal to devise quite a complicated incentive scheme, it only induces him to stop the exploration inefficiently early because of the agent’s propensity to procrastinate, rather than his temptation to cheat. This problem can be overcome, though, if the principal has access to a sequence of many agents.

To sum, if $\lambda_0 \geq \lambda_1$, the option to cheat makes it impossible to make the agent use arm 1; if $\lambda_0 < \lambda_1$, by contrast, incentives are optimally structured in such a way as to obviate

18Intuitively, one might think that hiring one particularly myopic agent might remedy the problem as well. However, while it is true that the impact future rewards have on today’s incentives, and hence the intra-marginal effect of an extended end time T, becomes arbitrarily small as the players become very impatient, the same holds true for the marginal benefit of extending play for an instant after a given time $T > 0$, so that in sum the distortion is independent of the players’ discount rate. If one were to relax the assumption that the players share the same discount rate, the problem could conceivably be addressed by the principal’s hiring an agent who is much more impatient than himself. I leave the analysis of players with differing discount factors outside the scope of this paper.
any impact of the cheating option on players’ payoffs. When he has access to a sequence of many agents, the principal can completely shut down the procrastination effect, rendering him willing even to implement the efficient amount of experimentation.

7 Conclusion

The present paper introduces the question of optimal incentive design into a dynamic single-agent model of experimentation on bandits. I have shown that even though the principal only cares about the first breakthrough, it is without loss for him only to reward later ones. Thus, even though the agent will be honest for sure in equilibrium, and hence the first observed breakthrough reveals everything the principal wants to know, committing to rewarding only the \((m + 1)\)-st breakthrough can be a potent means of keeping the agent honest in the first place. This is because an agent who has not cheated on his first success is more optimistic about his ability to generate a large number of later ones. Structuring incentives appropriately in this fashion precludes any distortions arising from the agent’s option to cheat whenever the cheating option does not render the provision of incentives completely impossible.

While the underlying assumptions of risk neutrality and unbounded transfers are unlikely to be satisfied in many real-world situations, so that, in reality, we will rarely observe incentives as steep as predicted, the structure of our incentive scheme is somewhat reminiscent of the situation prevailing in some professional sports.\(^{19}\) Indeed, the breaking of a world record, a victory at the Tour de France, or similar exploits, would clearly reveal the athlete’s type at once, as such a feat would patently demonstrate its author to be an undisputed master of his discipline, provided one could be certain that the success was achieved by honest means alone, and was not the result of cheating, e.g. in the form of the consumption of illegitimate performance-enhancing substances. If one accepts the assumption that doping cannot quite replicate the success rate of a true champion (e.g. because the high dosage necessary would be certain to endanger the athlete’s health), this might be one reason why the most lucrative contracts are won by athletes with many successes under their belts.\(^{20}\)

My model would be one in which the sponsors and the public cared about the athlete’s type,

\(^{19}\)I am indebted to Sergei Severinov for pointing this out to me.

\(^{20}\)For instance, in the 2013 Forbes List of the highest-paid active athletes (see http://www.forbes.com/athletes/list/ [accessed on June 6, 2014]), the two top spots were held by Tiger Woods ($78.1 mil. p.a.) and Roger Federer ($71.5 mil. p.a.). Tiger Woods won his first major in 1997, and has accumulated a rather impressive record of victories since. Roger Federer won his first Grand Slam Singles title in Wimbledon in 2003, and, at the time of writing, has notched up 16 additional Grand Slam wins since, making him the all-time record holder for Grand Slam Singles titles.
rather than the victories *per se*: They want to endorse, and cheer on, a true champion and role model. While athletes will not cheat in equilibrium, so that a first success will already fully reveal their type, my analysis would thus suggest that one would optimally commit to an incentive scheme requiring athletes to achieve an extremely unlikely string of many further successes after a first success that puts the spotlight on them.

As my analysis shows, the possibility of essentially unbounded transfers is quite powerful indeed.\(^{21}\) In fact, one natural conjecture would be that they should allow for the implementation of the principal’s desired action provided there existed a state of the world to which the agent attached positive probability that had the property that the distribution of observable signals that the principal’s desired action produced in this state could not be replicated in any state of the world occurring with positive probability by a deviation that would be profitable to the agent under zero transfers.\(^{22}\) In my setting, this would mean that honesty was implementable as long as the supremum of the realizations of \(\lambda_1\) to which the agent attached strictly positive probability was strictly higher than \(\lambda_0.\)\(^{23}\)

My scheme heavily relies on the agent’s risk neutrality in that he is only paid in case of very rare events, yet, whenever a payment is made, it will be enormously large. Indeed, if the agent were risk averse, my scheme clearly would no longer be optimal. Moreover, as giving incentives via the continuation scheme exposes the agent to additional risk, it may well no longer be optimal for the principal to give all the incentives via the continuation scheme. Furthermore, since the provision of incentives via the continuation scheme imposes an additional cost on the principal, it need no longer be the case that the agent will always be kept indifferent between arm 1 and the safe arm; i.e. the conclusion that the availability of a cheating option does not lead to any distortions in players’ payoffs is unlikely to generalize to the case of a risk averse agent. In addition, as the principal is now averse to fluctuations in the agent’s income, it might even be optimal for him to pay the agent in the absence of a breakthrough. What is clear however is that the implementation of honesty becomes more expensive if the agent is risk averse, as he has to be made to bear some risk lest he use the safe arm. This introduces an additional distortion making the principal give up on the project even earlier. I commend a more thorough investigation of these issues to future work.

In my model, the principal only employs one single agent at any given moment in time. While intuition would suggest that the rationale for only rewarding later breakthroughs

\(^{21}\)If there was a binding bound on transfer payments, this would interfere with the construction underlying Proposition 4.1 by restricting the principal’s choice of \(m\) and \(T(t).\)

\(^{22}\)See Rahman (2010), who shows that an allocation is implementable if and only if all deviations that are profitable under zero transfers are statistically detectable.

\(^{23}\)I am indebted to Philippe Jehiel for this suggestion.
should carry over to the case of several agents’ simultaneously investigating the same hypothesis, a full investigation of this case would constitute a further interesting avenue for future exploration.
Appendix

A Construction of An Optimal Continuation Scheme

A.1 Construction

The purpose of this section of the appendix is to show, by virtue of what is essentially a continuity argument, that, given \(\hat{T}(t) \) and \(m, \overline{V}_0 \) can be chosen in a way that ensures that the on-path agent exactly get what he is supposed to get, namely \(w_t \). In order to do so, given \(m, \hat{T}(t) \), and \(\overline{V}_0 \), I now recursively define the auxiliary functions \(V_i(\cdot; \overline{V}_0) : [t, \hat{T}(t)] \rightarrow \mathbb{R} \) for \(i = 1, \cdots, m \) according to

\[
V_i(\hat{t}; \overline{V}_0) := \max_{\{k_i, \tau\} \in \mathcal{M}(\hat{t})} \int_t^{\hat{T}(t)} e^{-r(\tau-\hat{t})-\lambda_t} f^{\tau-k_i,x} d\tau \left[s + k_i, \tau \left(\lambda_1 V_{i-1}(\tau; \overline{V}_0) - s \right) \right] d\tau,
\]

where \(\mathcal{M}(\hat{t}) \) denotes the set of measurable functions \(k_i : [\hat{t}, \hat{T}(t)] \rightarrow [0,1] \), and I set \(V_0(\tau; \overline{V}_0) := \overline{V}_0 + \frac{s}{r} \left(1 - e^{-r(\hat{T}(t)-\tau)} \right) \). Thus, \(V_i(\hat{t}; \overline{V}_0) \) denotes the agent’s continuation value at time \(\hat{t} \) given the agent knows that \(\theta = 1 \) and that he has \(i \) breakthroughs to go before being able to collect the lump sum \(\overline{V}_0 \). I summarize the upshot of this section in the following proposition:

Proposition A.1 (1.) If \(w_t > \lim_{\overline{V}_0 \uparrow \overline{V}_1} V_m(t; \overline{V}_0) \), there exists a lump sum \(\overline{V}_0 > \frac{s}{\lambda_1} \) such that \(w_t = V_m(t; \overline{V}_0) \).

(2.) If \(w_t \leq \lim_{\overline{V}_0 \uparrow \overline{V}_1} V_m(t; \overline{V}_0) \), there exist a lump sum \(\overline{V}_0 > \frac{s}{\lambda_1} \) and an end date \(\hat{T}(t) \in (t, \hat{T}(t)) \) such that \(w_t = V_m(t; \overline{V}_0) \) given the end date is \(\hat{T}(t) \).

Proof: The proof of statement (1.) relies on certain properties of the \(V_i \) functions, which are exhibited in Lemma A.2 below. The proof of statement (2.) additionally uses another auxiliary function \(f \), which is also introduced infra, and some properties of which are stated in Lemma A.3 below. The proof is therefore provided in Subsection A.2 after the proofs of Lemmas A.2 and A.3. \(\blacksquare \)

As already mentioned, the following lemma is central to the proof of Proposition A.1. It assumes a fixed end date \(\hat{T}(t) \leq t + \epsilon \), and notes that, once the agent knows that \(\theta = 1 \), a best response for him is given by a cutoff time \(t^*_i \) at which he switches to the safe arm given he has \(i \) breakthroughs to go. It also takes note of some useful properties of the functions \(V_i \):

Lemma A.2 Let \(\overline{V}_0 > \frac{s}{\lambda_1} \). A best response for the agent is given by a sequence of cutoff times \(t^*_m \leq \cdots \leq t^*_2 < t^*_1 = \hat{T}(t) \) (with all inequalities strict if \(t^*_{m-1} > t \), such that he uses arm \(1 \) at all times \(\hat{t} \leq t^*_1 \), and the safe arm at times \(\hat{t} > t^*_1 \), when he still has \(i \) breakthroughs to go before collecting the lump sum \(\overline{V}_0 \). The cutoff time \(t^*_i \) \((i = 1, \cdots, m) \) is increasing in \(\overline{V}_0 \); moreover, for \(i = 2, \cdots, m \), there exists a constant \(C_i \) such that, for \(\overline{V}_0 > C_i \), the cutoff time \(t^*_i \) is strictly increasing in \(\overline{V}_0 \). The functions \(V_i(\cdot; \overline{V}_0) \) are of class \(C^1 \) and strictly decreasing; \(V_i(\hat{t}; \cdot) \) is
continuous and (strictly) increasing (on \((V_0, \infty)\) for \(\hat{t} < t^*_i(V_0)\)). Moreover, \(\lim_{T_0 \to \infty} t^*_i = \hat{T}(t)\), and \(\lim_{T_0 \to \infty} V_i(\hat{t}; V_0) = \infty\) for any \(\hat{t} \in [t, \hat{T}(t)]\). The functions \(V_i\) satisfy

\[
V_i(\hat{t}; V_0) = \max_{t \in [\hat{t}, T(t)]} \int_{\hat{t}}^{t} e^{-(r+\lambda_1)(\tau-\hat{t})} \lambda_1 V_{i-1}(\tau; V_0) d\tau + \frac{s}{r} e^{-(r+\lambda_1)(\hat{t}-\hat{t})} \left(1 - e^{-r(T(t)-\hat{t})}\right),
\]

and \(V_i(\hat{t}; V_0) \leq V_{i-1}(\hat{t}; V_0)\), with the inequality strict for \(\hat{t} < t^*_i\).

Proof: See Subsection A.2.

The lemma thus immediately implies that if \(w_t > \lim_{T_0 \to \infty} V_m(t; V_0)\) for the given end date \(\hat{T}(t)\), we can find an appropriate \(V_0 > \frac{x}{\lambda_i}\) ensuring that \(w_t = V_m(t; V_0)\), as we note in statement (1.) of Proposition A.1.

If \(w_t \leq V_m(t; \frac{x}{\lambda_i})\), we need to lower the end date \(\hat{T}(t)\) further, as statement (2.) in Proposition A.1 implies. For this purpose, it turns out to be useful to define another auxiliary function \(f : \{t, \hat{T}\} \times (\frac{x}{\lambda_i}, \infty) \to \mathbb{R}\) by \(f(\hat{T}(t), V_0) = V_m(t; V_0; \hat{T}(t))\), where, in a slight abuse of notation, for any \(i = 1, \ldots, m\), I write \(V_i(t; V_0; \hat{T}(t))\) for \(V_i(\hat{t}; V_0)\) given the end date is \(\hat{T}(t)\). Thus, \(f(\hat{T}(t), V_0)\) maps the choice of the stopping time \(\hat{T}(t)\) into the on-path agent’s time-\(t\) expected payoff, given the reward \(V_0 > \frac{x}{\lambda_i}\). The following lemma takes note of some properties of \(f\):

Lemma A.3 \(f(., V_0)\) is continuous and strictly increasing with \(f(t; V_0) = 0\).

Proof: See Subsection A.2.

As we note in the proof of Proposition A.1, it immediately follows from Lemma A.3 that we can choose a lump sum \(V_0 > \frac{x}{\lambda_i}\) and an end date \(\hat{T}(t) < t + \epsilon\), so that \(w_t = f(\hat{T}(t), V_0)\). As one and the same \(m\) can be used for all \(\hat{T}(t)\) and \(V_0\), and \(w_t\) is piecewise continuous and \(f(., V_0)\) is continuous, it immediately follows that there exists a piecewise continuous \(t \mapsto \hat{T}(t)\) such that \(w_t = f(\hat{T}(t); V_0)\).

A.2 Proofs of Results in A.1

Proof of Lemma A.2

To analyze the agent’s best responses, I shall make use of Bellman’s Principle of Optimality. For a given \(k_{1,i}\), the HJB equation is given by

\[
V_i(\hat{t}; V_0) = \left[s + k_{1,i} (\lambda_1 V_{i-1}(\hat{t}; V_0) - s) \right] dt + (1-r)dt (1-k_{1,i} \lambda_1 dt) \left(V_i(\hat{t}; V_0) + \dot{V}_i(\hat{t}; V_0) dt \right) + o(dt).
\]

Thus, neglecting terms of order \(dt^2\) and higher, and re-arranging gives us

\[
rV_i(\hat{t}; V_0) = s + \dot{V}_i(\hat{t}; V_0) + k_{1,i} [\lambda_1 (V_{i-1}(\hat{t}; V_0) - V_i(\hat{t}; V_0)) - s]. \tag{A.1}
\]

\^[24\] I write \(t^*_i(V_0)\) for the cutoff \(t^*_i\) given the lump-sum reward is \(V_0\).
Hence, $k_{1,t} = 1$ solves the HJB equation if, and only if,

$$V_{i-1}(\tilde{t}; \nabla_0) - V_i(\tilde{t}; \nabla_0) \geq \frac{s}{\lambda_1};$$ \hspace{1cm} (A.2)

it is the unique solution if, and only if, this inequality is strict.

For $i = 1$, setting $k_{1, \tau} = 1$ for all $\tau \in [\tilde{t}, \tilde{T}(t)]$ implies

$$V_1(\tilde{t}; \nabla_0) = \frac{\lambda_1}{\lambda_1 + r} \left(1 - e^{-(r+\lambda_1)(\tilde{T}(t)-\tilde{t})} \right) \left(\nabla_0 + \frac{s}{r} \right) - \frac{s}{r} e^{-r(\tilde{T}(t)-\tilde{t})} \left(1 - e^{-\lambda_1(\tilde{T}(t)-\tilde{t})} \right).$$

Because $\nabla_0 > \frac{s}{\lambda_1}$, the derivative \dot{V}_1 satisfies

$$\dot{V}_1(\tilde{t}; \nabla_0) = -\lambda_1 e^{-(r+\lambda_1)(\tilde{T}(t)-\tilde{t})} \nabla_0 - se^{-r(\tilde{T}(t)-\tilde{t})} \left(1 - e^{-\lambda_1(\tilde{T}(t)-\tilde{t})} \right) \leq -se^{-r(\tilde{T}(t)-\tilde{t})} < 0.$$

By simple algebra, one finds that

$$V_0(\tilde{t}; \nabla_0) - V_1(\tilde{t}; \nabla_0) = \left(\frac{r}{r + \lambda_1} + \frac{\lambda_1}{r + \lambda_1} e^{-(r+\lambda_1)(\tilde{T}(t)-\tilde{t})} \right) \nabla_0 + \frac{s}{r} \left(1 - e^{-\lambda_1(\tilde{T}(t)-\tilde{t})} \right),$$

which one shows strictly to exceed $\frac{s}{\lambda_1}$ for all $\tilde{t} \in (t, \tilde{T}(t)]$ if $\nabla_0 > \frac{s}{\lambda_1}$. We conclude that $V_i(\cdot; \nabla_0)$ is of class C^1 and solves the HJB equation. Hence, V_i is the value function, and a cutoff strategy with $t^{*}_i = \tilde{T}(t)$ is optimal. Furthermore, $V_1(\cdot; \nabla_0)$ is absolutely continuous, and strictly decreasing with $V_1(\tilde{t}; \nabla_0) \leq -se^{-r(\tilde{T}(t)-\tilde{t})}$ for all \tilde{t}.

Now let $i > 1$. As my induction hypothesis, I posit that V_{i-1} is of the following structure:

$$V_{i-1}(\tilde{t}; \nabla_0) = \int_{\tilde{t}}^{t^{*}_{i-1}} e^{-(r+\lambda_1)(\tilde{T}(t)-\tilde{t})} \lambda_1 V_{i-2}(\tau; \nabla_0) d\tau + e^{-(r+\lambda_1)\left(t^{*}_{i-1}-\tilde{t}\right)} \frac{s}{r} \left(1 - e^{-r(\tilde{T}(t)-t^{*}_{i-1})} \right)$$

if $\tilde{t} \leq t^{*}_{i-1}$, and

$$V_{i-1}(\tilde{t}; \nabla_0) = \frac{s}{r} \left(1 - e^{-r(\tilde{T}(t)-\tilde{t})} \right)$$

if $\tilde{t} > t^{*}_{i-1}$, for some $t^{*}_{i-1} \leq \tilde{T}(t)$. It is furthermore assumed that $V_{i-1}(\cdot; \nabla_0)$ is absolutely continuous and C^1, and that $\dot{V}_{i-1}(\tilde{t}; \nabla_0) \leq -se^{-r(\tilde{T}(t)-\tilde{t})}$ for all $\tilde{t} \in (t, \tilde{T}(t))$.

Now, if $V_{i-1}(t; \nabla_0) < \frac{s}{\lambda_1} + \frac{s}{r} \left(1 - e^{-r(\tilde{T}(t)-t)} \right)$, I set $t^{*}_i = t$. Otherwise, I define t^{*}_i as the lowest t^* satisfying $V_{i-1}(t^*; \nabla_0) = \frac{s}{\lambda_1} + \frac{s}{r} \left(1 - e^{-r(\tilde{T}(t)-t^*)} \right)$. Since $V_{i-1}(\tilde{t}; \nabla_0) \leq -se^{-r(\tilde{T}(t)-\tilde{t})}$ for all $\tilde{t} \in (t, \tilde{T}(t))$, $V_{i-1}(\cdot; \nabla_0)$ is continuous, and $V_{i-1}(\tilde{T}(t); \nabla_0) = 0$, it is the case that t^{*}_i exists, and $t^{*}_i < \tilde{T}(t)$.

Fix an arbitrary $\tilde{t} \in (t, \tilde{T}(t))$. If $V_{i-1}(\tilde{t}; \nabla_0) \leq \frac{s}{\lambda_1} + \frac{s}{r} \left(1 - e^{-r(\tilde{T}(t)-\tilde{t})} \right)$, i.e. $\tilde{t} \geq t^{*}_i$, $k_{1, \tilde{t}} = 0$ for all $\tilde{t} \in [\tilde{t}, \tilde{T}(t)]$, and its corresponding payoff function $V_i(\tilde{t}; \nabla_0) = \frac{s}{r} \left(1 - e^{-r(\tilde{T}(t)-\tilde{t})} \right)$ solve the HJB equation. Indeed, the payoff function $V_i(\tilde{t}; \nabla_0) = \frac{s}{r} \left(1 - e^{-r(\tilde{T}(t)-\tilde{t})} \right)$ is of class C^1, and, since $V_{i-1}(\tilde{t}; \nabla_0) \leq -se^{-r(\tilde{T}(t)-\tilde{t})}$, we have that $V_{i-1}(\tilde{t}; \nabla_0) - V_i(\tilde{t}; \nabla_0) \leq \frac{s}{\lambda_1}$ at all times $\tilde{t} \in [\tilde{t}, \tilde{T}(t)]$.

25This follows from a standard verification argument; one can for instance apply Prop. 2.1 in Bertsekas (1995, p.93).
This establishes that \(V_i \) is indeed the value function, and that \(k_{1,i} = 0 \) is a best response for all \(\hat{t} \geq t_i^* \).\(^{26}\)

Now, let us assume that \(V_{i-1}(\hat{t}; \nabla_0) > \frac{s}{\lambda_1} + \frac{s}{r} \left(1 - e^{-r(T(t) - \hat{t})} \right) \). I shall now show that \(k_{1,\hat{t}} = 1 \) for all \(\hat{\tau} \in [\hat{t}, t_i^*], k_{1,\hat{t}} = 0 \) for all \(\hat{\tau} \in (t_i^*, \hat{T}(t)] \), and its appertaining payoff function,

\[
V_i(\hat{\tau}; \nabla_0) = \begin{cases}
\int_{\hat{\tau}}^{r} e^{-(r+\lambda_1)(\tau-\hat{\tau})} \lambda_1 V_{i-1}(\tau; \nabla_0) \, d\tau + e^{-(r+\lambda_1)(t_i^*-\hat{\tau})} \frac{s}{r} \left(1 - e^{-r(T(t) - t_i^*)} \right) & \text{if } \hat{\tau} \leq t_i^* \\
\frac{s}{\hat{\tau}} \left(1 - e^{-r(T(t) - \hat{\tau})} \right) & \text{if } \hat{\tau} > t_i^*,
\end{cases}
\]

for \(\hat{\tau} \in [\hat{t}, \hat{T}(t)] \), solve the HJB equation. In order to do so, it is sufficient to show that \(V_i \) is \(C^1 \), and that \(V_{i-1}(\hat{\tau}; \nabla_0) - V_i(\hat{\tau}; \nabla_0) \geq \frac{s}{\lambda_1} \) for all \(\hat{\tau} \in [\hat{t}, t_i^*] \), while \(V_{i-1}(\hat{\tau}; \nabla_0) - V_i(\hat{\tau}; \nabla_0) \leq \frac{s}{\lambda_1} \) for all \(\hat{\tau} \in (t_i^*, \hat{T}(t)] \).

First, let \(\hat{\tau} \leq t_i^* \). Using the fact that, by absolute continuity of \(V_{i-1}(\cdot; \nabla_0) \), we have that for \(\tau \geq \hat{\tau} \)

\[
V_{i-1}(\tau; \nabla_0) = V_{i-1}(\hat{\tau}; \nabla_0) + \int_{\hat{\tau}}^{\tau} \dot{V}_{i-1}(\sigma; \nabla_0) \, d\sigma \leq V_{i-1}(\hat{\tau}; \nabla_0) - \frac{s}{r} e^{-r(T(t) - \hat{\tau})} \left(e^{r(\tau - \hat{\tau})} - 1 \right)
\]

by our induction hypothesis, one shows that the following condition is sufficient for \(V_{i-1}(\hat{\tau}; \nabla_0) - V_i(\hat{\tau}; \nabla_0) \geq \frac{s}{\lambda_1} \):

\[
\left[\frac{r}{r + \lambda_1} + \frac{\lambda_1}{r + \lambda_1} e^{-(r+\lambda_1)(t_i^*-\hat{\tau})} \right] \left[V_{i-1}(\hat{\tau}; \nabla_0) + \frac{s}{r} e^{-r(T(t) - \hat{\tau})} \right] - \frac{s}{r} e^{-(r+\lambda_1)(t_i^*-\hat{\tau})} - \frac{s}{\lambda_1} \geq 0. \quad (A.3)
\]

As \(\hat{\tau} \leq t_i^* \), we have that \(V_{i-1}(\hat{\tau}; \nabla_0) \geq \frac{s}{\lambda_1} + \frac{s}{r} \left(1 - e^{-r(T(t) - \hat{\tau})} \right) \), which implies that (A.3) holds, since

\[
\left[\frac{r}{r + \lambda_1} + \frac{\lambda_1}{r + \lambda_1} e^{-(r+\lambda_1)(t_i^*-\hat{\tau})} \right] \left[\frac{s}{\lambda_1} + \frac{s}{r} \right] - \frac{s}{r} e^{-(r+\lambda_1)(t_i^*-\hat{\tau})} - \frac{s}{\lambda_1} = 0.
\]

Moreover, we have that \(\dot{V}_i(\hat{\tau}; \nabla_0) = -se^{-r(T(t) - \hat{\tau})} \) if \(\hat{\tau} > t_i^* \), and

\[
\dot{V}_i(\hat{\tau}; \nabla_0) = -\lambda_1 e^{-(r+\lambda_1)(t_i^*-\hat{\tau})} V_{i-1}(t_i^*; \nabla_0) + \frac{r + \lambda_1}{r} e^{-(r+\lambda_1)(t_i^*-\hat{\tau})} \left(1 - e^{-r(T(t) - t_i^*)} \right) s
\]

\[
+ \lambda_1 \int_{\hat{\tau}}^{t_i^*} e^{-(r+\lambda_1)(\tau-\hat{\tau})} \dot{V}_{i-1}(\tau; \nabla_0) \, d\tau
\]

for \(\hat{\tau} < t_i^* \). Hence, using \(V_{i-1}(t_i^*; \nabla_0) = \frac{s}{\lambda_1} + \frac{s}{r} \left(1 - e^{-r(T(t) - t_i^*)} \right) \), one shows that \(\lim_{\tau \uparrow t_i^*} V_i(\tau; \nabla_0) = -se^{-r(T(t) - t_i^*)} = \lim_{\tau \uparrow t_i^*} \dot{V}_i(\tau; \nabla_0), \) implying that \(V_i \) is of class \(C^1 \). Thus, I have shown that \(k_{1,\hat{t}} = 1 \) for all \(\hat{\tau} \in [\hat{t}, t_i^*], k_{1,\hat{t}} = 0 \) for all \(\hat{\tau} \in (t_i^*, \hat{T}(t)] \), and

\[
V_i(\hat{t}; \nabla_0) = \begin{cases}
\int_{\hat{t}}^{t_i^*} e^{-(r+\lambda_1)(\tau-\hat{t})} \lambda_1 V_{i-1}(\tau; \nabla_0) \, d\tau + e^{-(r+\lambda_1)(t_i^*-\hat{t})} \frac{s}{r} \left(1 - e^{-r(T(t) - t_i^*)} \right) & \text{if } \hat{t} \leq t_i^* \\
\frac{s}{\hat{t}} \left(1 - e^{-r(T(t) - \hat{t})} \right) & \text{if } \hat{t} > t_i^*,
\end{cases}
\]

\(^{26}\)If \(V_{i-1}(\hat{t}; \nabla_0) = \frac{s}{\lambda_1} + \frac{s}{r} \left(1 - e^{-r(T(t) - \hat{t})} \right) \), we have just argued that the value function is given by \(V_i(\hat{t}; \nabla_0) = \frac{s}{r} \left(1 - e^{-r(T(t) - \hat{t})} \right) \). In this case, any \(k_{1,\hat{t}} \in [0,1] \) is a best response. \textit{Intra}, it is shown that this indifference can only occur at \(t_i^* \).
solve the HJB equation. Hence, \(V_i \) is indeed the value function. As, by induction hypothesis, \(V_{i-1}(\cdot; \lambda^0) \) is absolutely continuous, and hence of bounded variation, it immediately follows that \(V_i(\cdot; \lambda^0) \) is also of bounded variation, and hence absolutely continuous.

It remains to prove that \(V_i(\cdot; \lambda^0) \leq -s e^{-r(T(t)-\bar{t})} \) for \(\bar{t} < t^i_* \). Yet, this is easily shown to follow from the fact that, by induction hypothesis, \(V_{i-1}(\bar{t}; \lambda^0) \leq -s e^{-r(T(t)-\bar{t})} \), and hence

\[
\lambda_1 \int_{\bar{t}}^{t^i_*} e^{-(r+\lambda_1)(\tau-\bar{t})} V_{i-1}(\tau; \lambda^0) d\tau \leq -s e^{-r(T(t)-\bar{t})} \left(1 - e^{-\lambda_1(t^i_*-\bar{t})} \right),
\]

which completes the induction step.

Now, consider some \(i \in \{1, \cdots, m-1\} \). Having established that the agent’s best response is given by a cutoff strategy, I shall now show that \(t^i_{i+1} \leq t^i_* \). Consider an arbitrary time \(\bar{t} \geq t^i_* \), and suppose the agent still has \(i+1 \) breakthroughs to go. By stopping at an arbitrary time \(t^* \in (\bar{t}, T(t)] \), the agent can collect

\[
\int_{\bar{t}}^{t^*} \lambda_1 \frac{s}{r} e^{-(r+\lambda_1)(\tau-\bar{t})} \left(1 - e^{-r(T(t)-\tau)} \right) d\tau + \frac{s}{r} e^{-(r+\lambda_1)(t^*-\bar{t})} \left(1 - e^{-r(T(t)-t^*)} \right)
\]

\[
= \frac{s}{r} \left[\frac{\lambda_1}{\lambda_1 + r} \left(1 - e^{-(r+\lambda_1)(t^*-\bar{t})} \right) - e^{-r(T(t)-\bar{t})} \left(1 - e^{-\lambda_1(t^*-\bar{t})} \right) \right] + \frac{s}{r} e^{-(r+\lambda_1)(t^*-\bar{t})} \left(1 - e^{-r(T(t)-t^*)} \right).
\]

By stopping immediately at time \(\bar{t} \), he can collect \(\frac{s}{r} \left(1 - e^{-r(T(t)-\bar{t})} \right) \). Thus, since

\[
1 - e^{-r(T(t)-\bar{t})} > \frac{\lambda_1}{\lambda_1 + r} \left(1 - e^{-(r+\lambda_1)(t^*-\bar{t})} \right) - e^{-r(T(t)-\bar{t})} \left(1 - e^{-\lambda_1(t^*-\bar{t})} \right) + e^{-(r+\lambda_1)(t^*-\bar{t})} \left(1 - e^{-r(T(t)-t^*)} \right)
\]

\[
\iff 1 > \frac{\lambda_1}{r + \lambda_1} + \frac{r}{r + \lambda_1} e^{-(r+\lambda_1)(t^*-\bar{t})},
\]

the agent strictly prefers to stop immediately at \(\bar{t} \). For \(\bar{t} = t^i_* \) in particular, we can conclude that \(t^i_{i+1} \leq t^i_* \); if \(t^i_* > \bar{t} \), we have that \(t^i_{i+1} < t^i_* \).

Clearly, if \(\lambda^0 > \lambda^0_0 \), we have that \(V_i(\bar{t}; \lambda^0) \geq V_i(\bar{t}; \lambda^0_0) \) for all \(\bar{t} \in [\bar{t}, T(t)] \) and all \(i = 1, \cdots, m \), as the agent can always use the strategy that was optimal given the reward \(\lambda^0_0 \), and be no worse off when the reward is \(\lambda^0_0 \) instead. Moreover, \(V_i(\bar{t}; \cdot) \) is strictly increasing for all \(\bar{t} < t^i_* = T(t) \), with \(\lim_{\lambda^0 \to \infty} V_i(\bar{t}; \lambda^0) = \infty \). I posit the induction hypothesis that for all \(\lambda^0_0 \in (\lambda^0_1, \infty) \), and all \(\bar{t} < t^i_{i-1}(\lambda^0_0) \), we have that \(V_{i-1}(\bar{t}; \cdot) \) is strictly increasing on \((\lambda^0_0, \infty) \), with \(\lim_{\lambda^0 \to \infty} V_{i-1}(\bar{t}; \lambda^0) = \infty \).

As playing a cutoff strategy with the old cutoff \(t^i_*(\lambda^0) \) is always a feasible strategy for the agent, we can conclude that for \(\bar{t} < t^i_*(\lambda^0) < t^i_{i-1}(\lambda^0_0) \), and \(\lambda^0 > \lambda^0_0 \),

\[
V_i(\bar{t}; \lambda^0) \geq \int_{\bar{t}}^{t^i_*(\lambda^0)} \lambda_1 e^{-(r+\lambda_1)(\tau-\bar{t})} V_{i-1}(\tau; \lambda^0) d\tau + \frac{s}{r} e^{-(r+\lambda_1)(t^i_*(\lambda^0)-\bar{t})} \left(1 - e^{-r(T(t)-t^i_*(\lambda^0))} \right)
\]

\[
> V_i(\bar{t}; \lambda^0_0),
\]

with the last inequality following from the fact that \(\bar{t} < t^i_*(\lambda^0_0) < t^i_{i-1}(\lambda^0_0) \), implying by our induction hypothesis that \(V_{i-1}(\tau; \lambda^0_0) > V_{i-1}(\tau; \lambda^0_0) \) for all \(\tau \in [\bar{t}, t^i_*(\lambda^0_0)] \). By the same token, our
induction hypothesis implies that $V_{i-1}(\tau; \hat{V}_0) \rightarrow \infty$ as $\hat{V}_0 \rightarrow \infty$ for all $\tau \in [\tilde{t}, t^*_i(\hat{V}_0)]$, so that we can conclude that $\lim_{\hat{V}_0 \rightarrow \infty} V_i(\tilde{t}; \hat{V}_0) = \infty$. To sum, $V_i(\tilde{t}; \cdot)$ is increasing, and strictly increasing on (\hat{V}_0, ∞) with $\lim_{\hat{V}_0 \rightarrow \infty} V_i(\tilde{t}; \hat{V}_0) = \infty$. Hence, we have that $t^*_i(\hat{V}_0) > t^*_{i+1}(\hat{V}_0)$ for all $\hat{V}_0 > \hat{V}_0$. We conclude that the cutoff $t^*_{i+1}(\cdot)$ is strictly increasing on (\hat{V}_0, ∞).

Now, suppose that $t^*_i(\hat{V}_0) = \tilde{t}$. Then, $V_i(t; \hat{V}_0) \leq \frac{s}{\lambda_1} + \frac{r}{\lambda_1} \left(1 - e^{-(r(T(t) - t^*_i))}\right)$. Let $j := \min \{t \in [1, \ldots, m] : t^*_i(\hat{V}_0) = t\}$. Since $t^*_i = T(t) > t$, we have that $j \geq 2$. Now, $V_{j-1}(t; \cdot)$ is strictly increasing in (\hat{V}_0, ∞) with $\lim_{\hat{V}_0 \rightarrow \infty} V_{j-1}(t; \hat{V}_0) = \infty$. Hence, there exists a constant C_{j-1} such that for $\hat{V}_0 > C_{j-1}$, we have that $V_{j-1}(t; \hat{V}_0) > \frac{s}{\lambda_1} + \frac{r}{\lambda_1} \left(1 - e^{-(r(T(t) - t^*_i))}\right)$, and hence $t^*_i(\hat{V}_0) > \tilde{t}$. Iterated application of this argument yields the existence of a constant C_i such that $\hat{V}_0 > C_i$ implies that $t^*_{i+1}(\hat{V}_0) > \tilde{t}$. Hence, by our previous step, t^*_{i+1} is strictly increasing in \hat{V}_0 for $\hat{V}_0 > C_i$.

Now, consider arbitrary $\tilde{t} \in [t, \tilde{T}(t))]$ and $i \in \{1, \ldots, m\}$. Let σ be defined by $\sigma := \max \{t \in [1, \ldots, m] : t^*_i(\hat{V}_0) > \tilde{t}\}$. As $\tilde{t} < \tilde{T}(t) = t^*_i$, $\sigma \geq 1$. As $\tilde{t} < t^*_{i+1}(\hat{V}_0)$, $V_i(\tilde{t}; \hat{V}_0) = \infty$. Hence, there exists a constant \hat{C}_σ such that $\hat{V}_0 > \hat{C}_\sigma$ implies $V_i(\tilde{t}; \hat{V}_0) > \frac{s}{\lambda_1} + \frac{r}{\lambda_1} \left(1 - e^{-(r(T(t) - t^*_i))}\right)$, and hence $t^*_{i+1}(\hat{V}_0) > \tilde{t}$. Iterated application of this argument yields the existence of a constant \hat{C}_{i-1} ($i \in \{1, \ldots, m\}$) such that $\hat{V}_0 > \hat{C}_{i-1}$ implies $t^*_i(\hat{V}_0) > \tilde{t}$. As $\tilde{t} \in [t, \tilde{T}(t))$ was arbitrary, we conclude that $\lim_{\hat{V}_0 \rightarrow \infty} t^*_i(\hat{V}_0) = t^*_i$, and that $\lim_{\hat{V}_0 \rightarrow \infty} V_i(\tilde{t}; \hat{V}_0) = \infty$ for any $\tilde{t} \in [t, \tilde{T}(t))$, $i \in \{1, \ldots, m\}$.

For $\tilde{t} < t^*_i$, we have that $V_i(\tilde{t}; \hat{V}_0) \leq \frac{s}{\lambda_1} \left(1 - e^{-(r(T(t) - \tilde{t}^*_i))}\right) \leq V_{i-1}(\tilde{t}; \hat{V}_0)$. It remains to be shown that for $\tilde{t} < t^*_i$, $V_i(\tilde{t}; \hat{V}_0) < V_{i-1}(\tilde{t}; \hat{V}_0)$. Since V_{i-1} is strictly decreasing, we have that

$$V_i(\tilde{t}; \hat{V}_0) = \int_{\tilde{t}}^{t^*_i} e^{-(r+\lambda_1)(\tau^*_i - \tilde{t})} \cdot V_{i-1}(\tau; \hat{V}_0) d\tau + e^{-(r+\lambda_1)(\tilde{t}^*_i - \tilde{t})} s \frac{r}{\lambda_1} \left(1 - e^{-(r(T(t) - \tilde{t}^*_i))}\right)$$

$$\leq \frac{\lambda_1}{\lambda_1 + r} V_{i-1}(\tilde{t}; \hat{V}_0) \left(1 - e^{-(r+\lambda_1)(t^*_i - \tilde{t})}\right) + e^{-(r+\lambda_1)(\tilde{t}^*_i - \tilde{t})} s \frac{r}{\lambda_1} \left(1 - e^{-(r(T(t) - \tilde{t}^*_i))}\right).$$

Now, suppose that $V_i(\tilde{t}; \hat{V}_0) \geq V_{i-1}(\tilde{t}; \hat{V}_0)$. Then, the above inequality implies that

$$\left(\frac{r}{\lambda_1 + r} + \frac{\lambda_1}{\lambda_1 + r} e^{-(r+\lambda_1)(t^*_i - \tilde{t})}\right) V_i(\tilde{t}; \hat{V}_0) \leq e^{-(r+\lambda_1)(\tilde{t}^*_i - \tilde{t})} s \frac{r}{\lambda_1} \left(1 - e^{-(r(T(t) - \tilde{t}^*_i))}\right).$$

Yet, as $V_i(\tilde{t}; \hat{V}_0) \geq \frac{s}{\lambda_1} \left(1 - e^{-(r(T(t) - \tilde{t}^*_i))}\right) > \frac{s}{\lambda_1} \left(1 - e^{-(r(T(t) - \tilde{t}^*_i))}\right)$, this implies

$$\frac{r}{\lambda_1 + r} + \frac{\lambda_1}{\lambda_1 + r} e^{-(r+\lambda_1)(t^*_i - \tilde{t})} < e^{-(r+\lambda_1)(\tilde{t}^*_i - \tilde{t})},$$

a contradiction.

It remains to be shown that the functions V_i are continuous functions of \hat{V}_0. Here, we will in fact show that V_i are jointly continuous in (\tilde{t}, \hat{V}_0).
For $i = 1$, this immediately follows from the explicit expression for V_1. By our explicit expression for V_i, all that remains to be shown is that t_i^* is a continuous function of \bar{V}_0. For $t_i^* = \tilde{T}(t)$, this is immediate. Before we are ready to do the appertaining induction step, we first make two preliminary observations.

Firstly, it is the case that, for all i, \(V_i(\tilde{t}; \bar{V}_0) < -se^{-r(\tilde{T}(t) - \tilde{t})} \) for $\tilde{t} < t_i^*$. Indeed, for $i = 1$, this is immediate. For $i > 1$, the induction step follows as supra by noting that if $\tilde{t} \in [t, t_i^*)$, we have that $t < t_i^* < t_{i-1}^*$. Secondly, this immediately implies that if $t_i^* > t$, the equation

\[
V_{i-1}(\tilde{t}; \bar{V}_0) - \frac{\tilde{t}}{h} \left(1 - e^{-r(\tilde{T}(t) - \tilde{t})} \right) - \frac{\tilde{t}}{h} = 0 \]

has in fact $\tilde{t} = t_i^*$ as its unique root.

Our induction hypothesis is that $t_i^*(\bar{V}_0)$ and $V_{i-1}(\tilde{t}; \bar{V}_0)$ are continuous. Let $\bar{V}_0 \in \left(\frac{\tilde{t}}{h}, \infty \right)$ be arbitrary. I shall now argue that our induction hypothesis implies that $t_i^*(\bar{V}_0)$ (and hence V_i) is continuous at \bar{V}_0. To do so, it is convenient to define an auxiliary function $h(\bar{V}_0, \tilde{t}) := V_{i-1}(\tilde{t}; \bar{V}_0) - \frac{\tilde{t}}{h} \left(1 - e^{-r(\tilde{T}(t) - \tilde{t})} \right) - \frac{\tilde{t}}{h}$: we note that h is continuous by induction hypothesis.

First, assume that \bar{V}_0 is such that $h(\bar{V}_0, t) < 0$. Since h is continuous, it follows that $h(\bar{V}_0, t) < 0$, and hence $t_i^*(\bar{V}_0) = t$, for all \bar{V}_0 in some neighborhood of \bar{V}_0.

Now, let $h(\bar{V}_0, t) = 0$. Then, $t_i^*(\bar{V}_0) = t_i^*(\bar{V}_0)$. We have to show that for every $\tilde{t} > 0$ there exists a $\delta > 0$ such that for all \bar{V}_0 satisfying $|\bar{V}_0 - \bar{V}_0| < \delta$ we have that $|t_i^*(\bar{V}_0) - t| < \epsilon$. Fix an arbitrary $\epsilon \in (0, \tilde{T}(t) - t)$ (if $\epsilon > \tilde{T}(t) - t$ the statement trivially holds for all $\delta > 0$), and consider the date $\tilde{t} := t + \frac{\epsilon}{h}$. As $t_i^*(\bar{V}_0) > t$, we have that $h(\bar{V}_0, \tilde{t}) < 0$. As $h(\cdot, \tilde{t})$ is continuous (by induction hypothesis), and, as we have shown, increasing in \bar{V}_0 with $\lim_{\bar{V}_0 \to \infty} h(\bar{V}_0, \tilde{t}) = \infty$, we know that there exists a $\bar{V}_0 > \bar{V}_0$ such that $h(\bar{V}_0, \tilde{t}) = 0$. Moreover, by monotonicity of $h(\cdot, \tilde{t})$, we have that $h(\bar{V}_0, \tilde{t}) \leq 0$ for all $\bar{V}_0 \leq \bar{V}_0$, and hence $t_i^*(\bar{V}_0) \leq \tilde{t} < t + \epsilon$. Defining $\delta := \bar{V}_0 - \bar{V}_0 > 0$ completes the step.

Finally, suppose that $h(\bar{V}_0, t) > 0$. In this case, $t_i^*(\bar{V}_0) > t_i^*(\bar{V}_0) > t$. Since $t_i^*(\bar{V}_0)$ is continuous in \bar{V}_0 by our induction hypothesis, there exist $\bar{\epsilon} > 0$ such that $t_i^*(\bar{V}_0) + \bar{\epsilon} < t_i^*(\bar{V}_0)$ for all $\bar{V}_0 \in (\bar{V}_0 - \delta, \bar{V}_0 + \delta)$. This implies that for any $\tilde{t} \in (t_i^*(\bar{V}_0) - \bar{\epsilon}, t_i^*(\bar{V}_0) + \bar{\epsilon})$, and any fixed $\bar{V}_0 \in (\bar{V}_0 - \delta, \bar{V}_0 + \delta)$, we have that $V_{i-1}(\tilde{t}; \bar{V}_0) < -se^{-r(\tilde{T}(t) - \tilde{t})}$, and hence $\partial h(\bar{V}_0, \tilde{t}) < 0$. (We have shown above that $V_{i-1}(\cdot; \bar{V}_0)$, and hence $h(\bar{V}_0, \cdot)$, is C^1.) By the Implicit Function Theorem,\(^{27}\) continuity of $t_i^*(\bar{V}_0)$ at \bar{V}_0 now follows from the fact that $t_i^*(\bar{V}_0)$ is defined by $h(\bar{V}_0, t_i^*(\bar{V}_0)) = 0$.

Proof of Lemma A.3

That $f(t; \bar{V}_0) = 0$ immediately follows from the fact that $V_m(\bar{T}(t); \bar{V}_0) = 0$ for any $\bar{T}(t) \in [t, \bar{T}]$. Strict monotonicity of $V_i(\tilde{t}; \bar{V}_0; \hat{T}(t))$ ($i = 1, \ldots, m$) in $\hat{T}(t)$ is immediately implied by the observation that for any fixed $\tilde{t} \leq \tilde{T}_1$ and $\bar{V}_0 > \frac{\tilde{t}}{h}$, and given the end date $\bar{T}_2 > \tilde{T}_1$, the agent can always guarantee himself a payoff of $V_i(\tilde{t}; \bar{V}_0; \hat{T}_1) + \frac{\tilde{t}}{h} e^{-r(\hat{T}_1 - \tilde{t})} \left(1 - e^{-r(\hat{T}_2 - \hat{T}_1)} \right) > V_i(\tilde{t}; \bar{V}_0; \hat{T}_1)$ by following the strategy that was optimal for the end date \tilde{T}_1 in the time interval $[t, \tilde{T}_1]$ and playing safe for sure on $(\tilde{T}_1, \tilde{T}_2)$. As $f(\cdot; \bar{V}_0) = V_m(t; \bar{V}_0; \cdot)$, this shows the monotonicity property of f we claimed.

\(^{27}\)Most versions of the Implicit Function Theorem would require $V_{i-1}(\tilde{t}; \bar{V}_0)$ to be C^1 rather than just C^0. However, there are non-differentiable versions of the theorem; here, one can for instance use the version in Kudryavtsev (2001).
It remains to prove continuity of $f(\cdot; \nabla_0)$. By Lemma A.2, we have that

$$f(\check{T}(t), \nabla_0) = \begin{cases} t^m_1 e^{-(r+\lambda_1)(\tau-t)} \lambda_1 V_{m-1}(\tau; \nabla_0; \check{T}(t)) d\tau + e^{-(r+\lambda_1)(t^m_1-t)} \frac{\lambda_1}{r} \left(1 - e^{-r(\check{T}(t)-t^m_1)} \right) & \text{if } t < t^m_1, \\ t^m_1 e^{-(r+\lambda_1)(\tau-t)} \lambda_1 V_{m-1}(\tau; \nabla_0; \check{T}(t)) d\tau + e^{-(r+\lambda_1)(t^m_1-t)} \frac{\lambda_1}{r} \left(1 - e^{-r(\check{T}(t)-t^m_1)} \right) & \text{if } t = t^m_1, \\ \end{cases}$$

and that

$$V_i(\check{t}; \nabla_0; \check{T}(t)) = \begin{cases} t^s_i e^{-(r+\lambda_1)(\tau-t)} \lambda_1 V_{s-1}(\tau; \nabla_0; \check{T}(t)) d\tau + e^{-(r+\lambda_1)(t^s_i-t)} \frac{\lambda_1}{r} \left(1 - e^{-r(\check{T}(t)-t^s_i)} \right) & \text{if } \check{t} \leq t^s_i \\ t^s_i e^{-(r+\lambda_1)(\tau-t)} \lambda_1 V_{s-1}(\tau; \nabla_0; \check{T}(t)) d\tau + e^{-(r+\lambda_1)(t^s_i-t)} \frac{\lambda_1}{r} \left(1 - e^{-r(\check{T}(t)-t^s_i)} \right) & \text{if } \check{t} > t^s_i \end{cases}$$

for all $i = 1, \ldots, m$, and $\check{t} \in [t, \check{T}(t))$. Moreover, we have that

$$V_i(\check{t}; \nabla_0; \check{T}(t)) = \frac{\lambda_i}{\lambda_1 + r} \left(1 - e^{-(r+\lambda_1)(\check{T}(t)-\check{t})} \right) \left(\nabla_0 + \frac{s}{r} \right) e^{-r(\check{T}(t)-\check{t})} \left(1 - e^{-\lambda_1(\check{T}(t)-\check{t})} \right),$$

i.e. for any given ∇_0, V_i is jointly continuous in $(\check{t}, \check{T}(t))$; moreover, $t^s_i(\check{T}(t)) = \check{T}(t)$ is trivially continuous in $\check{T}(t)$.

The rest of the proof closely follows our proof of the continuity of $V_i(\check{t}; \nabla_0)$ in ∇_0 in Lemma A.2. In particular, our induction hypothesis is that $t^s_{i-1}(\check{T}(t))$ and $V_{i-1}(\check{t}; \nabla_0; \check{T}(t))$ are continuous (for a given fixed ∇_0). Let $\check{T}^* \in [t, \check{T}]$ be arbitrary. I shall now argue that our induction hypothesis implies that $t^s_i(\check{T}(t))$ is continuous at \check{T}^*; by our explicit expression for V_i, this implies that V_i is continuous in $(\check{t}, \check{T}(t))$, for given ∇_0. Again, we define an auxiliary function

$$\check{h}(\check{T}, \check{t}) : = V_{i-1}(\check{t}; \nabla_0; \check{T}) - \frac{\lambda_i}{\lambda_1 + r} \left(1 - e^{-(r+\lambda_1)(\check{T}(t)-\check{t})} \right) - \frac{s}{r} \left(\nabla_0 + \frac{s}{r} \right) e^{-r(\check{T}(t)-\check{t})} \left(1 - e^{-\lambda_1(\check{T}(t)-\check{t})} \right).$$

We recall from our proof of Lemma A.2 that $t^s_i(\check{T})$ is implicitly defined by $\check{h}(\check{T}, t^s_i(\check{T})) = 0$ if $\check{h}(\check{T}, t) \geq 0$; otherwise, $t^s_i(\check{T}) = t$. We note that \check{h} is continuous by induction hypothesis; we furthermore know that \check{h} is decreasing in \check{t}, and strictly decreasing if $\check{t} < t^s_{i-1}(\check{T})$. By our argument at the beginning of this proof, we also know that as we increase \check{T} to some arbitrary $\check{T}' > \check{T}$, V_{i-1} at $\check{t} \leq \check{T}$ increases by at least $\frac{s}{r} e^{-r(\check{T}-\check{t})} \left(1 - e^{-\lambda_1(\check{T}-\check{t})} \right)$.

Hence, we can conclude that $\check{h}(\check{T}, \check{t})$ is weakly increasing.

First, assume that \check{T}^* is such that $\check{h}(\check{T}^*, t) < 0$. Since \check{h} is continuous, it follows that $\check{h}(\check{T}, t) < 0$, and hence $t^s_i(\check{T}) = t$ for all \check{T} in some neighborhood of \check{T}^*.

Now, assume that $\check{h}(\check{T}^*, t) = 0$. This implies that $\check{T}^* \geq t^s_{i-1}(\check{T}^*) > t = t^s_i(\check{T}^*)$. We have to show that for every $\epsilon > 0$ there exists a $\delta > 0$ such that $|\check{T} - \check{T}^*| < \delta$ implies $|t^s_i(\check{T}) - t| < \epsilon$. Fix an arbitrary $\epsilon > 0$, and consider the date $\check{t} = t + \kappa \epsilon$, with $\kappa \in (0,1)$ being chosen so that $\check{t} < \check{T}^*$. As $t_{i-1}(\check{T}^*) > t$, we have that $\check{h}(\check{T}^*, \check{t}) < 0$. Now, suppose there exists a $\check{T}^{**} \in (\check{T}, \check{T}^*)$ such that $\check{h}(\check{T}^{**}, \check{t}) = 0$. Since $\check{h}(\check{T}, \check{t})$ is increasing, this implies that for all $\check{T} \in [t, \check{T}^{**}]$, we have that $t^s_i(\check{T}) \leq \check{t} < t + \epsilon$. In this case, setting $\delta = \check{T}^{**} - \check{T}^* > 0$ does the job. However, it could also be the case that $\check{h}(\check{T}, \check{t}) < 0$ for all $\check{T} \in [\check{T}^*, \check{T}]$. In this case, $t^s_i(\check{T}) < \check{t} < t + \epsilon$ for all $\check{T} \in [t, \check{T}]$. Hence, any $\delta > 0$, for instance $\delta = \frac{\check{T} - \check{T}^*}{2}$, will do.

Finally, suppose that $\check{h}(\check{T}^*, t) > 0$. In this case, $t^s_{i-1}(\check{T}^*) > t^s_i(\check{T}^*) = t$. Since t^s_{i-1} is continuous in \check{T} by our induction hypothesis, there exist $\check{t}, \check{\delta} > 0$ such that $t^s_i(\check{T}^{**}) + \check{\delta} < t^s_{i-1}(\check{T})$ for all $\check{T} \in (\check{T}^* - \check{\delta}, \check{T}^* + \check{\delta})$. This implies that for any $t \in (t^s_i(\check{T}^*) - \check{\delta}, t^s_i(\check{T}^*) + \check{\delta})$, and any fixed $\check{T} \in (\check{T}^* - \check{\delta}, \check{T}^* + \check{\delta})$, we have that $V_{i-1}(\check{t}; \nabla_0; \check{T}) < -se^{-r(\check{T}-\check{t})}$, and hence $\frac{\partial h}{\partial \check{T}}(\check{T}, \check{t}) < 0$. As \check{T}^* is an interior point (as
\(\hat{h}(t,t) = -\frac{s}{\lambda} < 0 \), we can again apply the Implicit Function Theorem to conclude that \(t_i^*(\hat{T}) \) is continuous at \(\hat{T}^* \), since \(t_i^*(\hat{T}) \) is defined by \(\hat{h}(\hat{T}, t_i^*(\hat{T})) = 0 \).

Thus, we have shown that, for all \(i = 1, \cdots, m \), \(t_i^*(\hat{T}) \) is continuous, and hence \(V_i(t; \hat{\omega}; \hat{T}) \) is jointly continuous in \((\hat{t}, \hat{T})\). In particular, this implies \(f(\hat{T}(t); \hat{\omega}_0; \hat{T}(t)) \) is continuous in \(\hat{T}(t) \).

Proof of Proposition A.1

By Lemma A.2, we know that \(V_m(t; \cdot) \) is continuous and (weakly) increasing; moreover, we know that there exists a constant \(C_m \) such that \(\hat{V}_0 > C_m \) implies that \(V_m(t; \cdot) \) is strictly increasing, with \(\lim_{t \to \infty} V_m(t; \hat{\omega}_0) = \infty \). Hence, statement (1.) follows.

With respect to statement (2.), we first choose some lump sum \(\hat{\omega}_0 > \frac{s}{\lambda} \) such that \(w_t < f(\hat{T}(t); \hat{\omega}_0) \). (The existence of such a \(\hat{\omega}_0 \) is immediate, by an analogous argument to above.) Continuity and monotonicity of \(f \) (see Lemma A.3) now immediately imply the existence of some \(\hat{T}(t) \in (t, \hat{T}(t)) \) such that \(w_t = f(\hat{T}(t); \hat{\omega}_0) \).

B Pontryagin’s Conditions for the Agent’s Problem

Neglecting a constant factor, the Hamiltonian \(\mathcal{H}_t \) for the agent’s problem is given by

\[
\mathcal{H}_t = e^{-rt} y_t [(1 - k_{0,t} - k_{1,t}) s + k_{0,t} \lambda_0 (\phi_t + \omega_t(x_t))] \\
+ y_t e^{-r(t-x_t)} [(1 - k_{0,t} - k_{1,t}) s + k_{0,t} \lambda_0 (\phi_t + \omega_t(x_t)) + k_{1,t} \lambda_1 (\phi_t + w_t)] \\
+ \mu_t \lambda_1 k_{1,t} - \gamma_t \lambda_0 k_{0,t} y_t.
\]

By the Maximum Principle,\(^{28}\) the existence of absolutely continuous functions \(\mu_t \) and \(\gamma_t \) respectively satisfying the equations (B.4) and (B.5) a.e., as well as (B.6), which has to be satisfied for a.a. \(t \), together with the transversality conditions \(\gamma_T = \mu_T = 0 \), are necessary for the agent’s behaving optimally by setting \(k_{1,t} = 1 \) at any time \(t \).\(^{29}\)

\[
\mu_t = e^{-rt} y_t \left\{ e^{-r t'} \left[(1 - k_{0,t} - k_{1,t}) s + k_{0,t} \lambda_0 (\phi_t + \omega_t(x_t)) + k_{1,t} \lambda_1 (\phi_t + w_t) \right] \\
- k_{0,t} \lambda_0 (1 + e^{-r t'}) \omega_t'(x_t) \right\}, \quad (B.4)
\]

\(^{28}\)See Theorem 2 in Seierstad & Sydsæter, 1987, p. 85. One verifies that the relaxed regularity conditions in Footnote 9, p. 132, are satisfied by observing that \(\omega_t(\hat{\rho}) \) is convex in \(\hat{\rho} \), hence continuous for \(\hat{\rho} \in (0,1) \). As \(t = \ln \left(\frac{1}{1-x} \right) \) is a continuous one-to-one transformation of \(\hat{\rho} \), the relevant continuity requirements are satisfied.

\(^{29}\)By standard arguments, the value function \(\omega_t(\hat{\rho}) \) is convex given any \(t \); hence, it admits left and right derivatives with respect to \(\hat{\rho} \) anywhere, and is differentiable a.e. Since \(x \) is a differentiable transformation of \(\hat{\rho} \), \(\omega'_t(x) \) exists as a proper derivative for a.a. \(x \). If \(x_t \) is one of those (countably many) points \(x \) at which it does not, \(\omega'_t(x_t) \) is to be understood as the right derivative (since \(x_t \) can only ever increase over time).
\[\dot{\gamma}_t = -e^{-rt}\left\{(1 - k_{0,t} - k_{1,t})s + k_{0,t}\lambda_0(\phi_t + \omega_t(x_t)) \right. \\
+ e^{-x_t}\left[(1 - k_{0,t} - k_{1,t})s + k_{0,t}\lambda_0(\phi_t + \omega_t(x_t)) + k_{1,t}\lambda_1(\phi_t + w_t)\right]\left\} + \gamma_t\lambda_0k_{0,t}, \quad (B.5) \]

\[e^{-rt}y_t\left[e^{-x_t}\lambda_1(\phi_t + w_t) - (1 + e^{-x_t})s\right] + \mu_t\lambda_1 \\
\geq \max\left\{0, e^{-rt}y_t(1 + e^{-x_t})[\lambda_0(\phi_t + \omega_t(x_t)) - s] - \gamma_t\lambda_0y_t\right\}. \quad (B.6) \]

Now, setting \(k_{1,t} = 1 \) at a.a. times \(t \) implies \(x_t = x_0 + \lambda_1 t \), and \(y_t = 1 \) for all \(t \). Thus, we can rewrite (B.4) and (B.5) as

\[\hat{\mu}_t = -\dot{\gamma}_t = e^{-rt-x_t}\lambda_1(\phi_t + w_t), \]

which is Equation (1) in the text. Furthermore we can rewrite (B.6) as the following two joint conditions:

\[e^{-rt}\left[e^{-x_t}\lambda_1(\phi_t + w_t) - (1 + e^{-x_t})s\right] \geq -\mu_t\lambda_1, \]

and

\[e^{-rt}\left[e^{-x_t}\lambda_1(\phi_t + w_t) - (1 + e^{-x_t})\lambda_0(\phi_t + \omega_t(x_t))\right] \geq -\mu_t(\lambda_1 - \lambda_0), \]

which are Equations (2) and (3) in the text.

C Other Proofs

Proof of Lemma 4.2

Fix an arbitrary \(\bar{T}(t) \in (t, \bar{\bar{T}}) \), \(\bar{\bar{T}} \in (t, \bar{T}(t)) \), \(\hat{p}_t \in [p_t, p_0] \), and \(V_0 > 0 \). Consider the restricted problem in which the agent can only choose between arms \(0 \) and \(1 \). Then, the agent’s time-\(\bar{\bar{T}} \) expected reward is given by

\[\int_{\bar{T}(t)}^{\bar{\bar{T}}(t)} e^{-r(\tau_m - \bar{\bar{T}})} \left(V_0 + \frac{s}{r} \left(1 - e^{-r(\bar{T}(t) - \tau_m)}\right)\right) dF, \]

where the integrand is decreasing in \(\tau_m \), the time of the \(m \)-th breakthrough after time \(\bar{\bar{T}} \). As the integrand is decreasing in \(\tau_m \), all that remains to be shown is that \(F^*(\cdot; \hat{p}_t) \), where \(F^*(\tau; \hat{p}_t) \) denotes the probability of \(m \) breakthroughs up to time \(\tau \) in \((\bar{\bar{T}}, \bar{T}(t)] \) when the agent always pulls arm \(1 \), is first-order stochastically dominated by the distribution of the \(m \)-th breakthrough for any alternative strategy, which I shall denote by \(\bar{F}(\cdot; \hat{p}_t) \). Fix an arbitrary \(\tau \in (\bar{\bar{T}}, \bar{T}(t)] \). Now,

\[F^*(\tau; \hat{p}_t) = \hat{p}_t^m \lambda_1^m (\tau - \bar{\bar{T}})^m e^{-\lambda_1(\tau - \bar{\bar{T}})}. \]

Whatever the alternative strategy under consideration may be, \(\bar{F} \) can be written as

\[\bar{F}(\tau; \hat{p}_t) = \int_0^1 F_\alpha(\tau; \hat{p}_t) \mu(d\alpha), \]
with
\[F_\alpha(\tau; \hat{p}_t) = \hat{p}_t \left[\frac{(\alpha \lambda_1 + (1 - \alpha)\lambda_0)^m}{m!} \right] \left(\tau - \hat{t} \right)^m e^{-(\alpha \lambda_1 + (1 - \alpha)\lambda_0)(\tau - \hat{t})} + (1 - \hat{p}_t) \left[\frac{(1 - \alpha)\lambda_0^m}{m!} \right] \left(\tau - \hat{t} \right)^m e^{-(1 - \alpha)\lambda_0(\tau - \hat{t})} \]

for some probability measure \(\mu \) on \(\alpha \in [0, 1] \). The weight \(\alpha \) can be interpreted as the fraction of the time interval \([\hat{t}, \tau]\) devoted to arm 1; of course, since the agent’s strategy allows him to condition his action on the entire previous history, \(\alpha \) will generally be stochastic. Therefore, the strategy of the proof is to find an \(m \) such that for any \(\hat{t} \in (t, \bar{T}) \), \(\tau \in (\hat{t}, \bar{T}) \) and \(\hat{p}_t \in [p_\tau, p_0] \), it is the case that
\[F^*(\tau; \hat{p}_t) > F_\alpha(\tau; \hat{p}_t) \] (C.7)

uniformly for all \(\alpha \in [0, 1] \).

In order to do so, I introduce the auxiliary function \(\xi(q) := q^m e^{-q(\tau - \hat{t})} \) (for \(q \in [0, \lambda_1], (\tau - \hat{t}) \in (0, \bar{T}) \)).\(^{30}\) Note that \(\xi \) is (strictly) increasing and (strictly) convex if \((m - (\tau - \hat{t})q)^2 > m > (\tau - \hat{t})\lambda_1 \) (for \(q > 0 \)). Therefore, by choosing \(m \) such that
\[(m - \bar{T}\lambda_1)^2 > m > \bar{T}\lambda_1, \] (C.8)
we can ensure that \(\xi \) is increasing and convex on its entire domain, for any \((\tau - \hat{t}) \in (0, \bar{T}) \).

Now, consider arbitrary \((\tau - \hat{t}) \in (0, \bar{T}) \) and \(\alpha \in [0, 1] \). By convexity of \(\xi \), we have that
\[(\alpha \lambda_1 + (1 - \alpha)\lambda_0)^m e^{-(\alpha \lambda_1 + (1 - \alpha)\lambda_0)(\tau - \hat{t})} \leq \alpha \lambda_1^m e^{-\lambda_1(\tau - \hat{t})} + (1 - \alpha)\lambda_0^m e^{-\lambda_0(\tau - \hat{t})}, \]

and
\[(\alpha 0 + (1 - \alpha)\lambda_0)^m e^{-(\alpha 0 + (1 - \alpha)\lambda_0)(\tau - \hat{t})} \leq \alpha 0 + (1 - \alpha)\lambda_0^m e^{-\lambda_0(\tau - \hat{t})}. \]

Now, adding \(\hat{p}_t \) times the first inequality to \(1 - \hat{p}_t \) the second yields
\[
\hat{p}_t(\alpha \lambda_1 + (1 - \alpha)\lambda_0)^m e^{-(\alpha \lambda_1 + (1 - \alpha)\lambda_0)(\tau - \hat{t})} + (1 - \hat{p}_t)\left((1 - \alpha)\lambda_0\right)^m e^{-(1 - \alpha)\lambda_0(\tau - \hat{t})} \\
\leq \hat{p}_t\alpha \lambda_1^m e^{-\lambda_1(\tau - \hat{t})} + (1 - \alpha)\lambda_0^m e^{-\lambda_0(\tau - \hat{t})} \\
= \hat{p}_t\lambda_1^m e^{-\lambda_1(\tau - \hat{t})} - (1 - \alpha)\lambda_0^m e^{-\lambda_1(\tau - \hat{t})} \left[\hat{p}_t e^{-(\lambda_1 - \lambda_0)(\tau - \hat{t})} \left(\frac{\lambda_0}{\lambda_1} \right)^m e^{(\lambda_1 - \lambda_0)(\tau - \hat{t})} \right] \]

Therefore, by choosing \(m \) large enough so that
\[p_\tau \left(\frac{\lambda_1}{\lambda_0} \right)^m > e^{(\lambda_1 - \lambda_0)\bar{T}}, \] (C.9)
we can ensure that the expression in square brackets is strictly positive, so that, since \(\alpha < 1 \), we have
\[\hat{p}_t(\alpha \lambda_1 + (1 - \alpha)\lambda_0)^m e^{-(\alpha \lambda_1 + (1 - \alpha)\lambda_0)(\tau - \hat{t})} + (1 - \hat{p}_t)((1 - \alpha)\lambda_0)^m e^{-(1 - \alpha)\lambda_0(\tau - \hat{t})} < \hat{p}_t\lambda_1^m e^{-\lambda_1(\tau - \hat{t})}. \]

\(^{30}\)I am indebted to an anonymous referee for suggesting this argument, which replaces a more convoluted one in earlier versions.
Thus, we choose an \(m \in \mathbb{N} \cap [2, \infty) \) large enough so that both (C.8) and (C.9) are satisfied. Note that the choice of \(m \) is independent of \(\alpha, \tilde{t}, \tau > \tilde{t}, \ T(t) \), and \(\hat{p}_i \in \{p_T, p_0\} \). Choosing \(m \) in this manner ensures that

\[
F^\ast(\tau; \hat{p}_i) > F_\alpha(\tau; \hat{p}_i)
\]

for all \(\alpha \in [0, 1) \). Hence, for such an \(m \), it is the case that for any \(\tilde{t}, \tau > \tilde{t} \), and \(\hat{p}_i \in \{p_T, p_0\} \), we have that \(F^\ast(\tau; \hat{p}_i) > \tilde{F}(\tau; \hat{p}_i) \) for any \(\tau > \tilde{t} \) whenever \(\mu \neq \delta_1 \), where \(\delta_1 \) denotes the Dirac measure associated with the strategy of always pulling arm 1, whatever befall.

It remains to be shown that the preference ordering does not change if the agent also has access to the safe arm. In this case, his goal is to maximize

\[
\int_{\tilde{t}}^{T(t)} \left\{ (1 - k_\tau)e^{-r(\tau - \tilde{t})} s + \int_{\tilde{t}}^{T(t)} e^{-r(\tau_m - \tilde{t})} \left(\bar{V}_0 + \frac{s}{r} (1 - e^{-r(T(t) - \tau_m)}) \right) d\tilde{F}(k_\tau)(\tau_m; \hat{p}_i) \right\} d\nu(\{k_\tau\}_{\tilde{t} \leq \tau \leq T(t)})
\]

over probability measures \(\tilde{F}(k_\tau) \) and \(\nu \), with the process \(\{k_\tau\} \) satisfying \(0 \leq k_\tau \leq 1 \) for all \(\tau \in [\tilde{t}, T(t)] \).

I now show that for any such process \(\{k_\tau\} \) and \(\hat{p}_i \in \{p_T, p_0\} \), it is the case that if \(\int_{\tilde{t}}^{T(t)} k_\sigma d\sigma = 0 \), then \(\tilde{F}(k_\tau)(\cdot; \hat{p}_i) = 0 \); if \(\int_{\tilde{t}}^{T(t)} k_\sigma d\sigma > 0 \), then \((\tilde{F}(k_\tau))^\ast \), the distribution over the \(m \)-th breakthrough that ensues from the agent’s never using arm 0, is first-order stochastically dominated by all other distributions \(\tilde{F}(k_\tau) \neq (\tilde{F}(k_\tau))^\ast \). Arguing as above, we can write

\[
\tilde{F}(k_\tau)(\tau; \hat{p}_i) = \int_{0}^{1} F^{(k_\tau)}(\tau; \hat{p}_i) d\alpha
\]

for

\[
F^{(k_\tau)}(\tau; \hat{p}_i) = \hat{p}_i \left[\frac{\alpha \lambda_1 + (1 - \alpha) \lambda_0}{m!} \right]^m \left(\int_{\tilde{t}}^{\tau} k_\sigma d\sigma \right) \left(\int_{\tilde{t}}^{\tau} k_\sigma d\sigma \right) e^{-(\alpha \lambda_1 + (1 - \alpha) \lambda_0) \int_{\tilde{t}}^{\tau} k_\sigma d\sigma}
\]

and some probability measure \(\mu \). Since all changes with respect to our calculations above is for \(\tau - \tilde{t} > 0 \) to be replaced by \(\int_{\tilde{t}}^{\tau} k_\sigma d\sigma \in [0, \tau - \tilde{t}] \), and our previous \(\tau \) was arbitrary, the previous calculations continue to apply if \(\int_{\tilde{t}}^{\tau} k_\sigma d\sigma > 0 \). (Otherwise, \(\tilde{F}(k_\tau) = 0 \) for all measures \(\mu \).) In particular, any \(m \geq 2 \) satisfying conditions (C.8) and (C.9) ensures that if \(\int_{\tilde{t}}^{T(t)} k_\sigma d\sigma > 0 \), \((\tilde{F}(k_\tau))^\ast \) is first-order stochastically dominated by any \(\tilde{F}(k_\tau) \neq (\tilde{F}(k_\tau))^\ast \). As \(e^{-r(\tau_m - \tilde{t})} \left(\bar{V}_0 + \frac{s}{r} (1 - e^{-r(T(t) - \tau_m)}) \right) \) is decreasing in \(\tau_m \), we can conclude that setting \(\alpha = 1 \) with probability 1 is (strictly) optimal for all \(\{k_\sigma\}_{\tilde{t} \leq \sigma \leq T(t)} \) (with \(\int_{\tilde{t}}^{T(t)} k_\sigma d\sigma > 0 \)).

Proof of Lemma 5.1

Since \(m \) is constant over time, piecewise continuity of \(\tilde{T}(t) \) and of the lump sum reward \(\bar{V}_0(t) \) (as a function of the date of the first breakthrough \(t \)) imply the piecewise continuity in \(t \) of the value \(\omega_t(x) \). As \(\omega_t(x) \) is furthermore continuous in \(x \) (see Footnote 28), the regularity conditions
required for Filippov-Cesari’s Existence Theorem (Thm. 8 in Seierstad & Sydsæter, 1987, p. 132) are satisfied.\footnote{See Note 17, p. 133, in Seierstad & Sydsæter, 1987, for a statement of the regularity conditions.}

Clearly, \(\tilde{U} \coloneqq \{(a, b) \in \mathbb{R}^2_+ : a + b \leq 1\} \) is closed, bounded and convex, the set of admissible policies is non-empty, and the state variables are bounded. Using in addition the linearity of the objective and the laws of motion in the choice variables (see Appendix B), one shows that the conditions of Filippov-Cesari’s Theorem are satisfied. \(\blacksquare \)

Proof of Proposition 5.2

Suppose that besides the path implied by \(k_{1,t} = 1 \) for all \(t \), there is an alternative path \((\hat{k}_{0,t}, \hat{k}_{1,t})_{0 \leq t \leq T} \)
with \(\hat{k}_{1,t} \neq 1 \) on a set of positive measure, which satisfies Pontryagin’s conditions. I denote the associated state and co-state variables by \(\hat{x}_t, \hat{y}_t, \hat{\mu}_t, \hat{\gamma}_t \) for the former, and \(\hat{x}_t, \hat{y}_t, \hat{\mu}_t, \hat{\gamma}_t \) for the latter path. Moreover, I define \(\hat{t} := \sup \{ t \in \bigcup_i (t^1_i, t^2_i) : \hat{t}^2_i < \hat{t}^1_i \text{ and } \hat{k}_{1,t} \neq 1 \text{ for a.a. } t \in (t^1_i, t^2_i) \} \). Since \(\hat{k}_{1,t} \neq 1 \) on a set of positive measure, we have that \(\hat{t} > 0 \).

By (B.4) and the transversality condition \(\hat{\mu}_T = \hat{\gamma}_T = 0 \), we have that \(e^{\hat{x}_i} \hat{\mu}_t = e^{\hat{x}_i} \hat{\mu}_t \); moreover, we know that, by Pontryagin’s principle, the mappings \(t \mapsto \frac{\hat{x}_i}{\hat{y}_t} \hat{\mu}_t \) and \(t \mapsto e^{\hat{x}_i} \hat{\mu}_t \) are continuous. Now, consider an \(\eta > 0 \) such that \(\hat{k}_{1,t} \neq 1 \) for a.a. \(t \in (\hat{t} - \eta, \hat{t}) \). (Such an \(\eta > 0 \) exists because \(\hat{k}_{1,t} \neq 1 \) on a set of positive measure.) Then, we have that

\[
\lambda_1(\phi_t + w_t) - (1 + e^{\hat{x}_t})s > \lambda_1(\phi_t + w_t) - (1 + e^{\hat{x}_t})s
\]

for all \(t \in [\hat{t} - \frac{\eta}{2}, \hat{t}] \), since \(\hat{x}_t < \hat{x}_t \) there. Moreover, since \(k_{1,t} = 1 \) for all \(t \) satisfies Pontryagin’s conditions, we have that

\[
\lambda_1(\phi_t + w_t) - (1 + e^{\hat{x}_t})s \geq -\lambda_1 e^{\hat{x}_i + r_t} \hat{\mu}_t
\]

for a.a. \(t \in [0, T] \), and hence, by continuity,

\[
\lambda_1(\phi_t + w_t) - (1 + e^{\hat{x}_t})s \geq \lambda_1(\phi_t + w_t) - (1 + e^{\hat{x}_t})s \geq -\lambda_1 e^{\hat{x}_i + r_t} \hat{\mu}_t = -\lambda_1 e^{\hat{x}_i + r_t} \frac{\hat{y}_t}{\hat{\mu}_t}. \quad (C.10)
\]

Since \((\hat{k}_{0,t}, \hat{k}_{1,t})_{0 \leq t \leq T} \) satisfies Pontryagin’s necessary conditions, and in particular condition (B.6), which implies that \(\hat{k}_{0,t} + \hat{k}_{1,t} = 1 \) at a.a. \(t \) at which it holds that

\[
\lambda_1(\phi_t + w_t) - (1 + e^{\hat{x}_t})s > -\lambda_1 e^{\hat{x}_i + r_t} \frac{\hat{y}_t}{\hat{\mu}_t},
\]

we can conclude that \(\hat{k}_{0,t} + \hat{k}_{1,t} = 1 \) for a.a. \(\tau \) in some left-neighborhood of \(\hat{t} \), as both sides of inequality (C.10) are continuous.

Furthermore, by conditions (B.4) and (B.5) and the transversality condition \(\hat{\mu}_T = \hat{\gamma}_T = 0 \), we have that \(-\lambda_0 e^{\hat{x}_i} \hat{\gamma}_t - \lambda_1 e^{\hat{x}_i} \frac{\hat{y}_t}{\hat{\mu}_t} \hat{\mu}_t = -(\lambda_1 - \lambda_0) e^{\hat{x}_i} \hat{\mu}_t. \) Again, by Pontryagin’s conditions,
the mapping \(t \mapsto -\lambda_0 e^{\hat{\xi}_t} - \lambda_1 \frac{e^{\hat{\xi}_t}}{y_t} \hat{\mu}_t \) is continuous. Moreover, we have that
\[
\lambda_1 (\phi_t + w_t) - \lambda_0 (1 + e^{\hat{\xi}_t}) (\phi_t + \omega_t (\hat{x}_t)) \\
\geq \lambda_1 (\phi_t + w_t) - \lambda_0 \left[w_t + (1 + e^{\hat{\xi}_t}) (\phi_t + \frac{s}{r} (1 - e^{-r e^t})) \right] \\
> \lambda_1 (\phi_t + w_t) - \lambda_0 \left[w_t + (1 + e^{\hat{\xi}_t}) (\phi_t + \frac{s}{r} (1 - e^{-r e^t})) \right]
\]
for all \(t \in [\hat{t} - \frac{\gamma}{2}, \hat{t}] \), with the first inequality being implied by Proposition 4.1. Moreover, by continuity, and the fact that \(k_{1,t} = 1 \) for all \(t \in [0, T] \) satisfies Pontryagin’s necessary conditions, we have that \(\phi_t + w_t \geq \frac{\lambda}{\lambda_1} (1 + e^{x_0}) > 0 \), and hence \(\phi_t + \frac{s}{r} (1 - e^{-r e^t}) > 0 \) for all \(t \in [0, T] \). Hence, since \(\hat{\xi}_t < \hat{x}_t \), the second inequality also holds for all \(t \in [\hat{t} - \frac{\gamma}{2}, \hat{t}] \). The fact that \(k_{1,t} = 1 \) for all \(t \in [0, T] \) satisfies Pontryagin’s conditions even for the upper bound on \(\omega_t \) given by Proposition 4.1
furthermore implies that
\[
\lambda_1 (\phi_t + \omega_t) - \lambda_0 \left[\phi_t + (1 + e^{\hat{\xi}_t}) (\phi_t + \frac{s}{r} (1 - e^{-r e^t})) \right] \geq -(\lambda_1 - \lambda_0) e^{\hat{\xi}_t} r \hat{\mu}_t
\]
for a.a. \(t \in [0, T] \), and hence, by continuity,
\[
\lambda_1 (\phi_t + w_t) - \lambda_0 \left[w_t + (1 + e^{\hat{\xi}_t}) (\phi_t + \frac{s}{r} (1 - e^{-r e^t})) \right] \geq -(\lambda_1 - \lambda_0) e^{\hat{\xi}_t} r \hat{\mu}_t.
\]
This implies that
\[
\lambda_1 (\phi_t + w_t) - \lambda_0 (1 + e^{\hat{\xi}_t}) (\phi_t + \omega_t (\hat{x}_t)) \\
\geq \lambda_1 (\phi_t + w_t) - \lambda_0 \left[w_t + (1 + e^{\hat{\xi}_t}) (\phi_t + \frac{s}{r} (1 - e^{-r e^t})) \right] \\
> -(\lambda_1 - \lambda_0) e^{\hat{\xi}_t} r \hat{\mu}_t = -e^{r t} \left[\lambda_0 e^{\hat{\xi}_t} + \lambda_1 \frac{e^{\hat{\xi}_t}}{y_t} \hat{\mu}_t \right].
\]

Since \((\hat{k}_{0,t}, \hat{k}_{1,t})_{0 \leq t \leq T} \) satisfies Pontryagin’s necessary conditions, and in particular condition (B.6), we can conclude by continuity that \(\hat{k}_{0,\tau} = 0 \) for a.a. \(\tau \) in some left-neighborhood of \(\hat{t} \). Yet, since by our previous step \(\hat{k}_{0,\tau} + \hat{k}_{1,\tau} = 1 \) for a.a. \(\tau \) in some left-neighborhood of \(\hat{t} \), we conclude that there exists some left-neighborhood of \(\hat{t} \) such that \(\hat{k}_{1,\tau} = 1 \) for a.a. \(\tau \) in this left-neighborhood, a contradiction to our definition of \(\hat{t} \). We can thus conclude that there does not exist an alternative path \((\hat{k}_{0,t}, \hat{k}_{1,t})_{0 \leq t \leq T} \), with \(\hat{k}_{1,t} \neq 1 \) on a set of positive measure, which satisfies Pontryagin’s conditions.

Proof of Proposition 6.2

For \(\frac{1}{p^n} \), the claim immediately follows from the explicit expressions for \(T^* \),
\[
T^* = \frac{1}{\lambda_1} \ln \left(\frac{-p_0 + \sqrt{p_0^2 + \frac{4}{r^2} p_0 (1 - p_0)}}{2(1 - p_0)} \right),
\]
and for the wedge
\[
\frac{p_{T^*} - p}{p} = \frac{2 - 2 + \sqrt{p_0^2 + 4 p_0 (1 - p_0)}}{2(1 - p_0)}.
\]

42
For p_0, one shows that the sign of $\frac{\partial T^*}{\partial p_0}$ is equal to the sign of

$$2(1 - p_0) + p_0 p_m - \sqrt{(p_m p_0)^2 + 4p_m p_0(1 - p_0)},$$

which is strictly positive if, and only if,

$$0 < (2(1 - p_0))^2.$$

This immediately implies that the wedge $e^{\lambda T^* - 1}$ is increasing in p_0.

Acknowledgements

I thank Johannes Hörner and Sven Rady for their advice, patience, and encouragement, as well as Dirk Bergemann, Tri-Vi Dang, Federico Echenique, Philippe Jehiel, Reinoud Joosten, Daniel Krähmer, Lucas Maestri, Thomas Mariotti, Benny Moldovanu, Pauli Murto, Tymofiy Mylovanov, Frank Rosar, Dinah Rosenberg, Francisco Ruiz-Aliseda, Sergei Severinov, Andy Skrzypacz, Eilon Solan, Bruno Strulovici, Juuso Välimäki, Tom Wiseman, Jianjun Wu, as well as seminar audiences at Arizona State University, Berlin, Bonn, Exeter, Montréal, Paris, UBC Vancouver, University of Iowa, and various conferences for helpful comments and discussions. I am especially grateful to the Cowles Foundation for Research in Economics at Yale University for an extended stay during which the idea for this paper took shape.

Role of Funding Source

Financial support from the National Research Fund of Luxembourg, the German Research Fund through SFB TR-15, and the Fonds de Recherche du Québec Société et Culture is gratefully acknowledged. These funding sources had no involvement in the actual writing or submission of this article.
References

(on May 9, 2012).

45

